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Abstract

Machine learning is a rapidly growing field of computer science that has the potential to
revolutionize various industries. With the ability to process vast amounts of data and im-
prove performance over time, it has become a powerful tool for solving complex problems
and driving innovation, and is being used in a wide range of industry applications.

In this thesis, we examine two interrelated subjects within the realm of machine learning
- privacy and compression. The explosion of data generation and usage in recent years
has brought about unprecedented opportunities for machine learning and AI-based ap-
plications. However, as data becomes increasingly personal and sensitive, the need for
protecting individual privacy has become paramount. Differential privacy, a mathemat-
ical framework for quantifying the privacy of the computational process of an algorithm
with respect to its input, has emerged as a leading technique for addressing this chal-
lenge. If we wish to allow the continuation of innovation and progress in the field, and
perhaps even expand it, users must be assured that the use of the databases will not
allow the privacy of any individual to be compromised. Another aspect whose impor-
tance is becoming more apparent, as databases increase, is the issue of compression. In
the last few years, we have witnessed the rise of models based on huge amounts of in-
formation. Whether these are large natural language models with billions of parameters,
visual analysis algorithms or image generators trained using terabytes of images from all
over the web, the size of the systems and databases is starting to pose a problem. First,
it creates enormous challenges in the computational and engineering aspects involved in
training such models. Nowadays, it is evident that there are many tasks in which it is
impossible for anyone other than giant technology companies to make progress, since only
they can carry out computations of this size. One idea that can offer the possibility of
a change in this paradigm is compression. The basis of this old idea is that patterns
in the information, such as those identified by machine learning tools, could allow to
compress the data into a relatively small number of records that contain all the knowl-
edge needed for the labeling pattern. The same logic applies in the other direction as
well. If a small number of such records can be identified, then it is possible to leverage
this identification process to produce learning processes. This idea arose naturally over
the years in the development of popular algorithms such as the Support Vector Machine
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and the Condensed Nearest Neighbor. Although the idea of compression is a significant
tool in the toolbox of research and development in the field of machine learning, the
exact relationship between the concept of compression and learning includes a number of
fundamental unsolved questions. This dissertation investigates the intersection of these
three areas by addressing four research questions that aim to deepen our understanding
of the connections between privacy, compression, and machine learning. The first topic,
that will be the basis of this thesis, stems from the following question:

Question: To what extent are machine learning and compression conceptually in-
tertwined, both qualitatively and quantitatively?

The two concepts are known to be highly connected, and for some settings even equivalent.
First, we investigate whether this equivalence can be extended to more fundamental
cases and, specifically, to real-valued functions also known as regression problems. To
tackle the challenge we start by constructing an efficient method to convert any learning
algorithm to a compression scheme. We then extend this technique from the basic case
of classification, meaning learning binary functions, to the broader one of regression.
Thus, we obtain the first general compressed regression result, guaranteeing that the
information lost is arbitrarily small.

The field of differential privacy has experienced a boom in recent years, but at the same
time, there are fundamental tasks whose understanding is incomplete. In the second part
of the dissertation, we explore the line of work related to the question:

Question: How much data is needed in order to learn from data, while guaranteeing
that privacy is not violated?

This quantification of the data size needed is referred to as the sample complexity of
the problem. We examine one such task - learning axis-aligned rectangles. It is known
that the dependency on the dimension must be at least linear, but prior works attaining
such optimal dependency required the sample complexity to grow logarithmically in the
space size. We present a novel algorithm that achieves both, as the data it requires scales
linearly in the dimension and asymptotically smaller than the log of the space size. The
technique used in order to attain this improvement involves the deletion of "exposed"
data-points sequentially, so that the influence of each individual on the final hypothesis
is limited inherently in the algorithm design.

In the third part of the dissertation, we investigate the very definition of private learning.
The standard definition of learning is aimed at providing accuracy guarantees, under
the assumption that the underlying distribution of the data is the worst possible each
time. There is a growing voice in the research advocating that this definition is too
pessimistic, i.e. it doesn’t reflect the actual properties of real-life data. This worst-case
paradigm is blamed for being part of the well-known gap between theory and practice in
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machine learning. Moreover, this pessimistic prospect gets amplified under the privacy
requirement, e.g. there are fundamental problems which are simply impossible to learn
under the privacy constraint, in contrast to an easy solution without restrictions. We join
this line of work, advocate the use of a more flexible model called “Universal Learning”,
and investigate its advantages over the classical model. Finally, in the last part of this
thesis, we move on to deal with adaptive data analysis. The research in this field revolves
around the attempt to produce analysis tools in a formal model for learning that aims
to be closer to the process that takes place in laboratories and in various practices of
data analysis. Instead of a static model of analysis where one question is asked and one
answer received, in the adaptive model many research and statistical queries are asked
in such a way that each query arises from the information accumulated during the prior
analytical process. In such a model, which is very close to a realistic process, statistical
constructions from the usual static model are not valid. Research in this area combines
ideas from the privacy and compression literature, since both can be used for designing
reliable algorithms under adaptive models. Under this complex yet important setting, we
explore the problem of extending the tools and results from the adaptive data analysis
literature to the setting of correlated examples. We provide results both for privacy-based
and compression-based tools.

Overall, this dissertation aims to deepen the understanding of the intersection between
differential privacy, machine learning and compression schemes, by addressing these re-
search questions. By doing so, we hope to contribute to the development of more efficient
and privacy-preserving machine learning algorithms.
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Chapter 1

Introduction

In the last decades we have experienced continuous growth in all areas of research in
computer science. Many tools and algorithms have been developed and are still being
developed to analyze inputs of different types and to understand what is possible and
what is impossible in each and every field. At the same time, the world of static research
is also experiencing a significant boom and concepts such as "statistical significance",
"correlation" and "linear regression" have become a must in the toolbox of natural and
social science researchers. Another new field in which interest has grown over the years is
"signal processing", the research field that integrates the two worlds of static and dynamic
research. In this field, the goal is to analyze a signal, which is a function of time, and to
understand its properties and characteristics. The signal can be of any type, such as a
sound signal, a video signal, a signal that represents the temperature in a given area, and
more. With the development of wide range of communication technologies the need for
signal processing has become more and more important. On this background the field of
"machine learning" has developed.

Machine learning is a field of computer science that deals with the development of al-
gorithms that can learn from data and make predictions on new data. The main goal
is to try and leverage information in order to produce systems and software capable of
performing diverse tasks. This field has experienced tremendous growth in recent years.
Systems that grow out of machine learning find many and quite varied uses: from ana-
lyzing medical tests, to chatbots and automatic art generators, to autonomous vehicles.
Most of the involvement in the field, both applied and research, revolves around the con-
struction of sophisticated models and new tools that will allow the industry to continue
fast-forward toward more goals and peaks. At the same time, there is great interest
in understanding the limitations of the core concepts and possibilities inherent in each
tool and in each situation. To this end, we must create a precise mathematical system
that will define the situations and challenges we face and enable their systematic and
meticulous research.
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CHAPTER 1. INTRODUCTION 2

The field of learning theory is a fundamental pillar of machine learning, providing a rigor-
ous framework for understanding the mechanisms of learning algorithms and their ability
to acquire knowledge from data. To fully explore the concepts and challenges of learning
theory, it is essential to establish a solid theoretical foundation. Key concepts include
hypothesis spaces, empirical risk minimization, and the bias-variance trade-off. Theoret-
ical properties such as convergence guarantees, sample complexity, and computational
complexity provide insights into the performance and limitations of learning algorithms.

In the context of learning theory, the notion of compression has gained considerable at-
tention. Compression refers to the ability to succinctly represent and describe patterns or
regularities in data. A system that exhibits compression can convey its results more con-
cisely than merely detailing the results themselves. The connection between compression
and learning has been established through theories and results developed in statistical
learning.

By considering these various aspects, including the foundations, challenges, and connec-
tions to compression, we can gain a deeper understanding of the limitations and possi-
bilities of learning algorithms. This understanding forms the basis for our investigation
into the specific questions and goals outlined in this thesis.

First, the question "What is learning?" must be answered - or, in a more detailed way,
"What requirements must an algorithm meet in order to be considered a learning algo-
rithm?". Intuitively, the idea is that the algorithm should improve as more information
is given. However, the definition of “improvement”, situations in which the algorithm is
expected to operate - plus other significant issues - needs to be well-defined. Once an ap-
propriate definition is chosen, the next critical question is "Which problems or situations
are learnable and which are not?". Naturally, this question is not easy to answer, and
many tools are required to shed light on this challenge.

Addressing the question of learnability necessitates the development of rigorous mathe-
matical frameworks. One such framework is based on the notion of uniform convergence.
The principle of uniform convergence asserts that as the size of the training dataset grows,
the algorithm’s performance on unseen data should converge to its expected performance.
In other words, the algorithm should generalize well to new instances beyond the training
set. The study of uniform convergence provides insights into the trade-offs between the
complexity of a learning algorithm, the size of the training dataset, and the algorithm’s
ability to generalize accurately.

Another approach to the learnability question is to formulate learning problems as op-
timization problems. Convex optimization provides a powerful mathematical framework
for solving optimization problems where the objective function and constraints exhibit
convexity. By casting learning problems as optimization problems, researchers can lever-
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age this rich mathematical theory and develop learning algorithms, allowing for efficient
computation and convergence guarantees to globally optimal solutions. The interplay be-
tween convex optimization and machine learning has led through the years to significant
advancements in developing robust and scalable learning algorithms.

However, even with tools such as those of uniform convergence and convex optimization
at our disposal, determining the learnability of a given problem remains a formidable
challenge. It is often influenced by the inherent complexity of the problem domain, the
quality and quantity of available data, and the expressiveness of the learning algorithm.
This challenge has prompted researchers to explore additional avenues for understanding
the limits and capabilities of machine learning systems.

One such avenue is rooted in the principle of Occam’s Razor, one of the most famous
and classic principles in theories dealing with learning and drawing conclusions based
on information. This principle can be found in Aristotle’s writings from two thousand
years ago, stating: "We may assume the superiority ceteris paribus of the demonstration
which derives from fewer postulates or hypotheses" (Aristotle, 1995). This idea was later
popularized by William of Ockham who phrased it as "Plurality should not be posited
without necessity" (Duignan, 1998), defines a theory or pattern deduced from data as
"good" if it is simple. If we wish to measure simplicity in a more precise manner,
a possible option is explanation length, i.e. the shorter, the better. In the language
of computer science, we could say that a system that has a pattern or regularity is
one whose results can be compressed and described in a shorter way than detailing the
results themselves. From this idea, and in light of theories and results developed in the
field of statistical learning, it has become evident that this type of compression is deeply
connected to learning.

Yet, in order to study this connection, the notions of learning and of compression must
be properly defined. Since the foundation of the learning theory field, several notions of
learning were proposed in an attempt to capture the characteristics of learning. One of
the main notions at the core of learning theory research, is that of Probably Approxi-
mately Correct (PAC) learning. We can informally describe a PAC-learning algorithm
as acting on given data and outputting a hypothesis which will accurately predict, with
high probability, the label of almost any newly sampled data point.

One of the main problems in learning theory is characterizing sample complexity, which
is the amount of data required in order to guarantee PAC-learning for a given class of
functions. It is known that the sample complexity of learning a class of binary functions is
proportional to its VC dimension (which we will define at Definition 3.1.5). For classes of
real-valued functions, an analogous result was proven using the notion of Fat-Shattering
dimension (Alon et al. (1997)). Nevertheless, various other notions of "learnability" have
been found beneficial and insightful. One of them is, indeed, the idea of compression.
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1.1 Compression

As progressively more novel learning algorithms have been designed, one of the common
aspects of note is that at the core lies a particular kind of data labeling compression: the
principle of finding "representative" subsets of the data as part of a more general Occam
learning paradigm. Most notable is the SVM algorithm, which derives its name from
the set of supporting vectors that uniquely defines the linear separator returned by the
algorithm (Cortes and Vapnik, 1995).

Following this path, Littlestone and Warmuth (1986) established a formal framework for
discussion of sample compression schemes from the learning point of view. In addition,
they showed that for the case of binary-labeled classes compression implies learnability 1.

A fundamental question posed by Littlestone and Warmuth (1986) in the same paper
concerns the reverse implication: Can every learner be converted into a sample com-
pression scheme? Or, in a more quantitative formulation: Does every learnable class
admit a constant-size sample compression scheme? A series of partial results (Floyd
(1989); Helmbold et al. (1992); Floyd and Warmuth (1995); Ben-David and Litman
(1998); Kuzmin and Warmuth (2007);Rubinstein et al. (2009); Rubinstein and Rubin-
stein (2012); Chernikov and Simon (2013); Livni and Simon (2013); Moran et al. (2017))
culminated in Moran and Yehudayoff (2016), which resolved the latter question. 2

The usefulness of this link is that, while learning is a statistical notion, compression is a
combinatorial one. Thus, linking the two by such an equivalence could help move ques-
tions about learning to the combinatorial world, opening the research to other directions
and to a wide range of tools previously not relevant to this area.

In the same way, the connection between compression and learnability can be investigated
in various settings and regimes. In recent years, it has been proven to be an extremely
useful tool for constructing learning algorithms for scenarios far from the classical PAC
model, such as adversarial learning (Montasser et al., 2019a) and parametric distribution
learning Ashtiani et al. (2020). But, at the same time, the connection in the other direc-
tion - converting learning algorithms and learnable problems into compressing schemes -
was left almost untouched. Since the main binary case had been in the center of interest
for so many years, and as this very setting had an equivalent open problem in category
theory, natural extensions and variations had been almost not studied at all. Moreover,
the tools used in order to attack and eventually solve the conjecture seem to rely on the
binary nature of the problem. This leads to our starting point for this part of the thesis,

1Lately there is growing interest in the properties and the generalization bounds of compressing-based
learning algorithms, see for example Gottlieb et al. (2016); Graepel et al. (2005); Cummings et al. (2016)

2The refined conjecture of Littlestone and Warmuth (1986), that any concept class C with VC-
dimension dC admits a compression scheme of size O (dC), remains open.
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which is the following:

Question 1. Are learning and compression equivalent definitions also for regression prob-
lems?

Our Contribution

Our first contribution was to extend Moran and Yehudayoff’s fundamental result, relating
compression and learning to the case of real-valued function classes. We begin with an
algorithmically efficient version of the learner-to-compression scheme conversion in Moran
and Yehudayoff (2016). Namely, our compression scheme size is linear in the dimension
and the dual-dimension of the class. Furthermore, the compression scheme is computable
in linear time in the initial sample size. More formally:

Theorem 1.1.1 (Efficient compression for classification, informal). Let C be a concept
class over some instance space X with VC-dimension dC, dual VC-dimension d∗C, and
suppose that A is a (proper, consistent) PAC-learner for C. There is a randomized sample
compression scheme for C of size O(k log k), where k = O(dCd

∗
C). Furthermore, on a

sample of any size m, the compression set may be computed in expected time O (m logm).
3

For comparison, a naive implementation of the Moran and Yehudayoff (2016) existence
proof yields a runtime of order mcdC + mcd∗C (for some universal constants c, c′), which
can be doubly exponential when d∗C = 2dC; this is without taking into account the cost of
computing the minimax distribution on the mcdC ×m game matrix.

Next, we extend the result in Theorem 1.1.1 from classification to regression. We provide
an efficient compression scheme for real-valued functions, which is computable in linear
time in the initial sample size. The size of the compression is linear in the fat-shattering
dimension and the dual-dimension of the class. More formally:

Theorem 1.1.2 (Efficient compression for regression, informal). Let F ⊂ [0, 1]X be a
function class with t-fat-shattering dimension Fatt (F), dual t-fat-shattering dimension
Fat∗t (F), and suppose that A is an ERM (i.e., proper, almost consistent) learner for F .
There is a randomized uniformly ε-approximate sample compression scheme for F of size
O (km̃ log(km̃)), where m̃ = O

(
Fatcε (F) log(1/ε)

)
and k = O

(
Fat∗cε (F) log(Fat∗cε (F) /ε)

)
.

Furthermore, on a sample of any size m, the compression set may be computed in expected time
O (m log(m) + k). 4

A key component in the above result is our construction of a generic weak-learner. We
use the definition of a weak-learner from Simon (1997), which is a different notion than

3For clarity, the linear dependency between the runtime of our algorithm and algorithm A has been
omitted.

4As in Theorem1.1.1, the linear dependency between the run-time of our algorithm and algorithm A
has been omitted for clarity.
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the standard notion of a weak-learner. While the standard notion is defined in therms
of average error, Simon’s definition is such that the bound on the error is required to be
bounded for most of the space. This is a stronger requirement, and is necessary for our
construction. Using Simon’s definition, we show that a weak-learner can be constructed
for every function class with bounded fat-shattering dimension.

Definition 1.1.3. For η ∈ [0, 1] and γ ∈ [0, 1/2], we say that f : X → R is an (η, γ)-weak
hypothesis (with respect to distribution D and target f ∗ ∈ F) if

Pr
X∼D

(|f(X)− f ∗(X)| > η) ≤ 1

2
− γ.

Theorem 1.1.4 (Generic weak learner). Let F ⊂ [0, 1]X be a function class with t-
fat-shattering dimension Fatt (F). For some universal numerical constants c1, c2, c3 ∈
(0,∞), for any η, δ ∈ (0, 1) and γ ∈ (0, 1/4), any f ∗ ∈ F , and any distribution D, letting
X1, . . . , Xm be drawn iid from D, where

m =

⌈
c1

(
Fatc2η (F) ln

(
c3
η

)
+ ln

(
1

δ

))⌉
,

with probability at least 1 − δ, every f ∈ F with maxi∈[m] |f(Xi) − f ∗(Xi)| ≤ αη for
α ∈ [0, 1), is an (η, γ)-weak hypothesis with respect to D and f ∗.

As one can see, our results allow us to use any hypothesis f ∈ F with maxi∈[m] |f(Xi)−
f ∗(Xi)| bounded below η: for instance, bounded by η/2.

This result sheds new light on an open question of Simon (1997). Moreover, the ideas
used in our construction proved fruitful in new settings, robust learning Montasser et al.
(2019b). In order to demonstrate the efficacy of the above results, we show applications
to two regression problems: learning Lipschitz and bounded-variation functions.

Another direction of learning theory and its characteristics which has emerged in the
last two decades is trustworthy machine learning. This includes various aspects and
implications of using the ideas and tools of learning theory, such as the robust-learning
mentioned above (see Attias et al. (2019); Madry et al. (2017); Goodfellow et al. (2014)),
fairness (see Dwork et al. (2012); Kearns et al. (2018)) and, most notably, privacy.

In light of the above, compression schemes evolved into a crucial concept on which classical
vanilla learning theory diverges in an essential way from the area of learning under privacy
concerns. The work in this chapter is joint with Steve Hanneke and Aryeh Kontorovich
(ALT 2019b).
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1.2 Privacy

As progressively more technology products become based upon machine learning tools,
and more branches of science turn to a more "evidence based" methodology, the use
of data becomes increasingly dominant. A lot of these data sets consist of personal
information, such as medical records, customer preferences, music listening history or
user behavior within sites. Such personal data is being collected by more companies in
order to gain insight and improve products, or to conduct scientific studies.

The importance of preserving the privacy of such data is common knowledge. It has
induced laws restricting the information that can be gathered by companies, and regula-
tions regarding who may use it in research, and in what manner. Privacy is important
when treating personal data, but crucial when a leak could cause actual harm or embar-
rassment to an individual. The straightforward definition of data leakage is unauthorized
exposure of the data itself. This type of concern is at the core of cryptography and
security research. A different type of data leakage, which is less intuitive, comes from
releasing information about the data. Partial information about data, summary statis-
tics or drawn conclusions are often regarded as safe for public release. To understand
why this might reveal sensitive information, consider the case of language models. Huge
language models have become essential in the recent remarkable progress in the field of
natural language processing. It is known that models of this size do "memorize" part
of their training data Liu et al. (2020); Arpit et al. (2017). Although this memorized
data seems to be concealed within the model, which often serves as a black box, it was
shown that clever inference attacks can recover properties of the training data, such as
the membership of sentences or recovery of strings contained in the data (Shokri et al.,
2016; Carlini et al., 2020). This might be a serious problem if attackers could use those
models to infer private textual information such as social numbers, medical status, and
other personal data.

To ensure that the result of such statistical and computational analysis will preserve
privacy even against unknown future attacks, a mathematical definition and guarantee
of privacy is desirable. In this thesis, we will focus on such a privacy notion called
Differential Privacy Dwork et al. (2006c).

Consider a data set S consisting of n rows, each row representing the information about
a specific individual. A (randomized) data analysis mechanism M will be regarded as
privacy-preserving if its output distribution will not be significantly affected by any indi-
vidual row. This intuitively guarantees that whatever can be learned about an individual
by the mechanism output can be learned if the personal data is arbitrarily modified.

Definition 1.2.1 (Dwork et al. (2006c); Dwork (2008); Dwork et al. (2006a)). A ran-
domized algorithm M is (ε, δ)-differentially private if for every two databases S, S ′ that
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differ on one row (such databases are called neighboring), and every set of outcomes F ,
we have Pr[M(S) ∈ F ] ≤ eε · Pr[M(S ′) ∈ F ] + δ. The definition is referred to as pure
differential privacy when δ = 0, and approximate differential privacy when δ > 0.

Note that differential privacy is a property of the mechanism and not of its outcome.

Differential privacy began with the revolutionary work of Dinur, Dwork, Nissim, McSh-
erry and Smith (Dwork et al., 2006b; Dinur and Nissim, 2003), who presented for the
first time a mathematical formulation of algorithmic information privacy. Their model is
based on the assumption that we trust the data curator or the server administrator who
collects and holds the data, but not the rest of the public and not even the researchers or
analysts who make professional use of the database. Still, we wish to provide meaningful
statistics and algorithmic tools based on the gathered data. The main idea, to prevent
the violation of the privacy of the information in the database, was to introduce addi-
tional randomness into the analytic process, usually by injecting limited noise into the
calculations. This addition would mask the influence of any individual in the database
on the results. Although this noise often affects accuracy, the hope is that since it is
bounded, this defect in accuracy will vanish as the sample size increases. Several studies
in recent years have shown that for many basic tasks, this is indeed the case. On the
other hand, other tasks turned out to be problematic in the sense that there is a gap,
sometimes unbridgeable, between the classical level of accuracy and that which can be
achieved under private requirements.

Following this line, over the last decade we have witnessed an explosion of research in
differential privacy, by now also being largely employed by major corporates such as
DeepMind Balle et al. (2022a), Alphabet Erlingsson et al. (2014a) and IBM Holohan
et al. (2019), and it was even embedded in the query system of the 2020 United States
census Haney et al. (2021). for privacy-preserving data analysis. In particular,
there has been a lot of interest in designing private learning algorithms, which guarantee
differential privacy for their training data. Intuitively, this guarantees that the outcome
of the learner (the identified hypothesis) leaks very little information in any particular
point from the training set. Works in this area include (Kasiviswanathan et al., 2011;
Beimel et al., 2014, 2019b, 2016a, 2020; Bun et al., 2015; Feldman and Xiao, 2015; Bun
et al., 2019a; Beimel et al., 2019a; Kaplan et al., 2019, 2020a; Alon et al., 2020; Kaplan
et al., 2020b; Bun et al., 2020b; Alon et al., 2019), and much more. At the same time,
the boundaries and limitations of private learning were studied thoroughly. The main
question is to characterize the sample complexity of private learning; more specifically,
the cost of requiring learners to preserve privacy, i.e. by how much the sample complexity
increases as a result of this requirement.

Several works demonstrated that, under pure differential privacy, some learning problems
which non-privately can be learned with constant sample complexity require O (log(|X |)),
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when X is the domain from which data points are sampled.

More generally, Bun et al. showed that the complexity of private learning grows at most
double exponentially with respect to the Littlestone, dimension and, specifically, the abil-
ity to learn privately is equivalent to the class having a finite Littlestone dimension. This
characterization widens the gap, as the Littlestone dimension can grow in an unbounded
manner relative to the VC dimension of the same class. In particular, there are known
classes whose VC dimension is finite and even constant, but Littlestone dimension is
infinite.

One of the most fundamental learning problems in which such a gap emerges is the class
of thresholds or, more generally, the class of axis aligned rectangles.

1.2.1 Learning axis aligned rectangles

In this thesis, we revisit this fundamental open question of the sample complexity of learn-
ing axis-aligned rectangles with privacy. Non-privately, learning axis-aligned rectangles
is one of the most simple and basic learning tasks which can be solved using compression
ideas. As it is easily and intuitively compressible, it is often given as the first example for
PAC learning in courses or books. Nevertheless, under privacy constraints the problem
is not only impossible for infinite domains but also for finite domains much more work is
needed in order to solve it. More formally, recall that the VC dimension of the class of all
axis-aligned rectangles over Rd is O(d), and hence a sample of size O(d) suffices to learn
axis-aligned rectangles non-privately (we omit throughout the introduction the depen-
dency of the sample complexity in the accuracy, confidence, and privacy parameters). In
contrast, it turns out that, with differential privacy, learning axis-aligned rectangles over
Rd is impossible, even when d = 1 (Feldman and Xiao, 2015; Bun et al., 2015; Alon et al.,
2019). In more detail, let X = {1, 2, . . . } be a finite (one dimensional) grid, and consider
the task of learning axis-aligned rectangles over the finite d-dimensional grid X d ⊆ Rd.
In other words, consider the task of learning axis-aligned rectangles under the promise
that the underlying distribution is supported on (a subset of) the finite grid X d.

For pure private learning, Feldman and Xiao (2015) showed a lower bound of Ω (d · log |X |)
on the sample complexity of this task. This lower bound is tight, as a pure-private learner
with sample complexity Θ(d · log |X |) can be obtained using the generic upper bound of
Kasiviswanathan et al. (2011). This should be contrasted with the non-private sample
complexity, which is independent of |X |.

For approximate-private learning, Beimel et al. (2016a) showed that the dependency of the
sample complexity in |X | can be significantly reduced. This, however, came at the cost of
increasing the dependency in the dimension d. Specifically, the private learner of Beimel
et al. (2016a) has sample complexity Õ

(
d3 · 8log∗ |X |

)
. We mention that a dependency
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on log∗ |X | is known to be necessary (Bun et al., 2015; Alon et al., 2019). Recently,
Beimel et al. (2019a) and Kaplan et al. (2020b) studied the related problem of privately
learning halfspaces over a finite grid X d, and presented algorithms with sample complexity
Õ
(
d2.5 · 8log∗ |X |

)
. Their algorithms can be used to privately learn axis-aligned rectangles

over X d with sample complexity Õ
(
d1.5 · 8log∗ |X |

)
. This can be further improved using the

recent results of Kaplan et al. (2020a), and obtain a differentially private algorithm for
learning axis-aligned rectangles over X d with sample complexity Õ

(
d1.5 · (log∗ |X |)1.5

)
.

We consider this bound to be the baseline for our work, and we will elaborate on it later
on Section 2.

To summarize, our current understanding of the task of privately learning axis-aligned
rectangles over X d gives us two kinds of upper bounds in the sample complexity: Either
d · log |X | or d1.5 · (log∗ |X |)1.5. That is, current algorithms either require sample com-
plexity that scales with log |X |, or else it scales super linearly in the dimension d. Our
starting point for this part of our work was to find a differentially private algorithm for
learning axis-aligned rectangles with sample complexity that scales linearly in d and is
asymptotically smaller than log |X |.

This naturally leads to the following question.

Question 2. Is there a differentially private algorithm for learning axis-aligned rectangles
with sample complexity that scales linearly in d and asymptotically smaller than log |X |?

Our Contribution

We answer question 2 in the affirmative, and present the following theorem.

Theorem 1.2.2 (informal). There exists a differentially private algorithm for learning
axis-aligned rectangles over X d with sample complexity Õ

(
d · (log∗ |X |)1.5

)
.

We do so by presenting a novel private algorithm for the problem which achieves this
sample complexity.

In order to attain this improvement, a new algorithmic technique had to be developed.
We elaborate on this in the main part of the thesis, we now present an intuitive simplified
version of the technique. The main idea includes the deletion of "exposed" data-points on
the go, in a manner designed to avoid the cost of the adaptive composition theorems (see
Chapter 2), as each iteration can’t affect other iterations, and by that avoid the super-
linear growth in complexity suffered by former solutions. At each iteration, one axis is
examined and a set of "candidate edge points" chosen, from which one point is picked
using an interior-point solver. The core of this technique may be of individual interest,
introducing a new method for constructing statistically-efficient private algorithms.

Nevertheless, this idea alone, removing "exposed"data points on the go, is not enough.
The failure point is that by deleting one point from the data, we can create a "domino
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effect" that affects (one by one) many of the candidate sets throughout execution. Re-
call that differential privacy requires analysis of runtime upon neighboring datasets (see
Definition 1.2.1 above). Consider two neighboring datasets S and S ′ = S ∪ {(x′, y′)} for
some labeled point (x′, y′) ∈ X d × {0, 1}. Suppose that during the execution on S ′, x′

gets picked as a "candidate point", thus the additional point x′ participates "only" in
the first iteration of the algorithm, and is afterwards deleted. However, since the size
of the candidate sets is fixed, during the execution on S (without the point x′) it holds
that a different point z gets included instead of x′, and this point z is then deleted from
S (but it is not deleted from S ′ during the execution on S ′). Therefore, also during the
second iteration, we have that S and S ′ are not identical (they still differ on one point)
and this domino effect can continue throughout the execution. That is, a single data
point can affect many of the executions of the algorithm, and we would still need to pay
in composition to argue privacy.

Our solution is based on two modifications to this approach. First, we add noise to the
size of the candidate sets, but we only use the n "inner" points from these sets. Second,
we delete elements from S not based on them being inside those sets, but only based on
the (privately computed) interval stretching from the first chosen edge point to the second
(at a given axis). This allows us to indeed separate the privacy analysis to each axis in
its own, without any influence between iteration, hence avoiding the need for applying
composition theorems and achieving an improved sample complexity. The work in this
chapter is joint with Uri Stemmer (NeurIPS 2021).

1.2.2 Universal Private Learning

Continuing this line of research, we understand that private learning is inherently harder
than classical. This is true theoretically, as just explained, but also practically, as design-
ing and implementing differential private algorithms proved to be challenging. Despite
tremendous efforts, in a lot of cases the state-of-the-art is still far from satisfactory. For
example, the recent deployment of differential privacy by the US Census only guarantees
a privacy parameter of ε = 19.61 (Bureau, 2021a), which translates to a relatively
weak privacy guarantee.5 One possible explanation for these challenges is that most of
the works on DP learning are inspired and explained by worst-case mathematical models
such as the theory of PAC Learning (Valiant, 1984), which is based on a distribution-free
perspective. While it gives rise to a clean and compelling mathematical picture, one may
argue that the PAC model fails to capture at a fundamental level the true behavior of
many practical learning problems (regardless of privacy consideration). A key criticism

5Observe that smaller privacy parameters ε, δ translate to stronger privacy guarantees in Defini-
tion 1.2.1, in the sense that a single input point would have a smaller effect on the outcome distribution.
On the flip side, reducing the privacy parameters is typically obtained by adding more noise and uncer-
tainty to the computation, which often translates to a loss in accuracy.
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of the PAC model is that the distribution-independent definition of learnability is too
pessimistic: real-world data is rarely worst-case, and experiments show that practical
learning rates can be much faster than predicted by PAC theory (Cohn and Tesauro,
1990b, 1992b). It therefore appears that the worst-case nature of the PAC model hides
key features that are observed in practice. Furthermore, these shortcomings seem to be
amplified in the context of private PAC learning. Those challenges, which are strength-
ened by theoretical results (e.g. the sample complexity gap mentioned in Section 1.2.1)
seem to reflect the worst-case distribution-free nature of the PAC model rather than
fundamental limitations of DP learning. This thesis, therefore, advocates the study of
distribution-dependent private-learning, as this can lead to a more optimistic (and realis-
tic) landscape of differentially private learning. We investigate a distribution dependent
model known as universal learning and ask the following fundamental question:

Question 3. For which problems or classes there exists a learning rule, such that for
every distribution, the rule’s learning rate converges with the best risk in class as the
number of examples tends to infinity.

As before, we might need to avoid natural universal learners which are compression based,
such as K-nearest neighbors Devroye et al. (2013) and OptiNet (Hanneke et al., 2019a),
as their behavior is inherently influenced by the sample at hand and thus might be too
sensitive to preserve privacy.

Our Contribution

We uncover the following general result:

Theorem 1.2.3. For every d ∈ N and every ε ≤ 1 there is an (ε, 0)-differentially private
universal consistent (UC) learner over Rd.

Recall that, as we mentioned, learning one-dimensional linear classifiers over R with
differential privacy is impossible in the PAC model. Theorem 1.2.3 circumvents this
impossibility result: not only are one-dimensional linear classifiers learnable in the UC
model, but in fact every class (over Rd) is learnable in this setting, and furthermore, there
is a single (universal consistent) algorithm that learns them all (w.r.t. any distribution).

To obtain Theorem 1.2.3 we design a simple variant for the classical histogram rule (Glick,
1973; Gordon and Olshen, 1978, 1980; Devroye et al., 2013) that partitions Rd into cubes
of the same size (where the size decreases with the sample size n), and makes a decision
according to the majority vote within each cube. This algorithm is particularly suitable
for differential privacy, and can be made private simply by adding noise to the votes within
each cube. In the analysis, we show that this does not break the universal consistency
of the histogram rule. Furthermore, We generalize those results to any separable metric
spaces with bounded doubling dimension.
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Remark 1.2.4. For simplicity, in Theorem 1.2.3 we fixed ε to be a constant (independent
of the sample size n). Our algorithm trivially extends to a setting where ε decreases with
the sample size.

We extend our results to the more general setting of density estimation in the UC model
(with respect to the total variation metric). That is, we seek a differentially private
algorithm which upon receiving a sample, outputs a density function which should be
close to the true unknown density function from which the sample was drawn. We say
that an algorithm is universal consistent if the Total Variation distance between the
output density and the true density converges to zero as the sample size grows to infinity.
Formally:

Definition 1.2.5 (Universal consistent density estimation, informal (Devroye and Györfi,
1985)). Let X be a domain and let A be an algorithm whose output is a density function
over X . Algorithm A is a universal consistent (UC) density estimator over X if for
every α, β and for every distribution µ over X there is a constant n = n(α, β, µ) such
that Pr S∼µn

f←A(S)
[∥f − µ∥TV > α] < β.

Unlike our private UC learner, which satisfies differential privacy with δ = 0 (this is
sometimes referred to a pure differential privacy), our private UC density estimator only
satisfies differential privacy with δ > 0. When using δ > 0, it is commonly agreed that the
definition of differential privacy only provides meaningful guarantees as long as δ ≪ 1/n.
Therefore, unlike with our private UC learner, we must let δ decay with the sample size n.
Our result is a universal consistent differentially private algorithm for density estimation
for which δ decays exponentially in the sample size.

Theorem 1.2.6. Let d ∈ N, let ε ≤ 1, and let δ : N → [0, 1] be a function satisfying
δ(n) = ω(2−

√
n). There is an (ε, δ(n))-differentially private universal consistent (UC)

density estimator over Rd.

This work is an important first step towards understanding differentially private universal
learning.

The work in this chapter is joint with Olivier Bousquet, Haim Kaplan, Aryeh Kontorovich,
Yishay Mansour, Shay Moran and Uri Stemmer 2022.

Finally, we turn our attention to the close subject of adaptive data analysis.

1.3 Adaptive data analysis

Statistical validity is a well known crucial aspect of modern science. In the past several
years, the natural and social science communities have come to realize that such validity
was not in fact preserved in numerous peer-reviewed and widely cited studies, leading to
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many false discoveries. Known as the replication crisis, this phenomenon threatens to
undermine the very basis for the public’s trust in science.

One of the main explanations for the prevalence of false discovery arises from the inherent
adaptivity in the process of data analysis. To illustrate this issue, consider a data analyst
interested in testing a specific research hypothesis. The analyst acquires relevant data,
evaluates the hypothesis, and (say) learns that it is false. Based on the findings, the
analyst now decides on a second hypothesis to be tested, and evaluates it on the same data
(acquiring fresh data might be too expensive or even impossible). That is, the analyst
chooses the hypotheses adaptively, where this choice depends on previous interactions
with the data. As a result, the findings are no longer supported by classical statistical
theory, which assumes that the tested hypotheses are fixed before the data is gathered,
and the analyst runs the risk of overfitting to the data.

In order to tackle this setting, we first make it explicit. We give here the formulation
presented by Dwork et al. (2015c). We consider a two-player game between a mechanism
M and an adversary A, defined as follows (see Section 3.1.5 for precise definitions).

1. The adversary A fixes a measure µ over X n (satisfying some conditions).

2. The mechanism M obtains a sample S ∼ µ containing n (possibly correlated)
observations.

3. For k rounds j = 1, 2, . . . , k:

• The adversary chooses a query hj : X → {0, 1}, possibly as a function of all
previous answers given by the mechanism.

• The mechanism obtains hj and responds with an answer zj ∈ R, which is given
to A.

We say thatM is (α, β)-empirically-accurate if with probability at least 1− β for every
j it holds that |zj − hj(S)| ≤ α, where hj(S) = 1

n

∑
x∈S hj(x) is the empirical average

of hj on the sample S. We say that M is (α, β)-statistically-accurate if with probability
at least 1 − β for every j it holds that |zj − hj(µ)| ≤ α, where hj(µ) =T∼µ [hj(T )] =

ET∼µ
[
1
n

∑
x∈T hj(x)

]
is the "true" value of the query hj on the underlying distribution

µ. Our goal is to design mechanismsM providing statistical-accuracy.

Starting from Dwork et al. (2015b,a), it has been demonstrated that various notions
of algorithmic stability, and in particular differential privacy, allow for methods which
maintain statistical validity under the adaptive setting. The vast majority of the works
in this area, however, strongly rely on the assumption that the data is sampled in an
i.i.d. fashion. This scenario excludes some natural and essential problems in learning
theory such as Markov chains, active learning, and autoregressive models (Kontorovich
and Ramanan, 2008; Kontorovich and Weiss, 2014; Kontorovich and Raginsky, 2017;
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Settles, 2009; Hanneke et al., 2014; Sacerdote, 2001).

A notable exception is a stability notion introduced by Bassily and Freund (2016), called
typical-stability. This beautiful and natural notion has the advantage that, under some
conditions on the underlying distribution, it can guarantee statistical validity even for
non-i.i.d. settings. However, one downside of the results of Bassily and Freund (2016) is
that they do not recover the i.i.d. generalization bounds in the limiting regime where the
dependencies decay to zero. In particular, in the i.i.d. setting, it is possible to efficiently
answer Õ(n2) adaptive queries given a sample of size n. In contrast, the results of Bassily
and Freund (2016) only allow to answer Õ(n) adaptive queries, even if the dependencies in
the data decay to zero. Motivated by this gap and the above results, we ask the following
question:

Question 4. Can the tools and results from the adaptive data analysis literature be ex-
tended to the correlated examples setting, giving a meaningful bound while also recovering
the i.i.d. generalization bounds in the limiting regime where the dependencies decay to
zero?

Our Contribution

Our first contribution to this line of work is to extend existing generalization results for dif-
ferential privacy from the i.i.d. setting to the correlated setting. To that end, we introduce
a notion we call Gibbs dependence to quantify the dependencies between the covariates
of a given joint distribution. We complement this result with a tight negative example.
Our second contribution is to extend the connection between transcript-compression and
adaptive data analysis also to the non-iid setting. Finally, we demonstrate an application
of our results for when the underlying measure can be described as a Markov chain.

Gibbs Dependence We extend the connection between differential privacy and gener-
alization to the case where the observations are correlated. We quantify the correlations
in the data using a new notion, called Gibbs dependence, which is closely related to the
classical Dobrushin interdependence coefficient (Kontorovich and Raginsky, 2017; Levin
and Peres, 2017). Intuitively, a measure which has ψ-Gibbs dependency is such that
knowledge about almost the entire sample does not provide too much information about
the remaining portion. Formally,

Definition 1.3.1. For a probability measure µ over a product space X n, define

ψ(µ) = sup
x∈Xn

E
i∼[n]

∥∥µi(·)− µi(· | x−i)∥∥TV
,

where µi(·) is the ith marginal measure and µi(· | x−i) is the ith marginal measure condi-
tioned on all the coordinates other than i (given some n-tuple x).
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Given ψ we say the µ has ψ-Gibbs dependence if ψ(µ) ≤ ψ.

A naive way for leveraging our notion of Gibbs dependence would be to "union bound" the
correlations across the n different coordinates. Specifically, one could show that if µ has
Gibbs-dependence ψ then ∥µ− µ∗∥TV ≤ nψ, where µ∗ is the product distribution in which
every coordinate is sampled independently of the corresponding marginal distribution in
µ. Thus, if ψ ≪ 1

n
then one could argue about generalization w.r.t. µ by applying

existing generalization bounds w.r.t. µ∗ in the independent case (since in this regime we
have ∥µ− µ∗∥TV ≪ 1). This argument, however, only works when the dependencies in µ
are very weak (i.e., when ψ ≪ 1

n
). We contribute to this line of work by showing that

differential privacy still provides generalization even if ψ is much larger, e.g., a constant
independent of the sample size n. Specifically,

Theorem 1.3.2. Let M be an (ε, δ)-differentially-private mechanism which is (α, β)-
empirically-accurate for k rounds given n samples. If n ≥ log(2kε/δ)

ε2
, then M is also

(α + 10ε+ 2ψ, β + δ
ε
)-statistically-accurate.

Remark 1.3.3. For the case when ψ is zero, and hence µ is a product measure (see
Example 7.4.1 below), Theorem 1.3.2 recovers the results achieved by differential privacy
for i.i.d. samples Dwork et al. (2015c); Bassily et al. (2016). Thus, Theorem 1.3.2
generalizes the connection between differential privacy and generalization to the correlated
setting.

Intuitively, the above theorem states that if the underlying distribution has Gibbs-
dependence ψ then the additional generalization error incurred by DP algorithms (com-
pared to the iid setting) is at most O(ψ). We complement this result with a tight negative
example, showing that there exists a distribution µ with Gibbs-dependence ψ and a DP
algorithm A that obtains generalization error Ω(ψ). This means that, in terms of the
Gibbs-dependence, our result is tight.

By applying Theorem 1.3.2 with a known DP mechanism for answering queries while
providing empirical accuracy, we are able to provide a computationally efficient mecha-
nism for answering adaptive queries for the case of non-zero dependencies, which sample
complexity depends in the Gibbs dependency of the query class. Formally:

Corollary 1.3.4. There is a computationally efficient mechanismM that is (α+2ψ, β)-
statistically-accurate for k adaptively chosen queries given a sample (an n-tuple) from an
underlying measure with Gibbs-dependency ψ satisfying n ≥ Õ

(√
k

α2 log 1
β

)
.

This result, again, generalizes the state-of-the-art bounds for the i.i.d. setting, where
ψ = 0. In particular, Corollary 1.3.4 shows that mild dependencies in the data, say
ψ = α, come for free in terms of the achievable bounds for adaptive data analysis. We
emphasize that ψ = α captures non-negligible dependencies. In particular, α could be
constant, independent of the sample size n.
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Transcript Compression The second direction we examine is that of transcript com-
pression.

Compression has been used in the context of adaptive data analysis. Dwork et al. (2015a)
used the definition of bounded description length (referred to here as transcript compres-
sion) to present an algorithm that is able to adaptively answer queries when the data
is i.i.d. sampled. This notion of compression differs from the one mentioned above; it is
more involved but, as shown by Dwork et al. (2015a) and also by our results, it is suited
for tasks requiring low sensitivity tools.

Our contribution here is in generalizing this idea by showing that the same definition,
when used in the right setting, allows maintaining adaptive accuracy even when the
distribution includes dependencies.

Following the approach of Bassily and Freund (2016), we aim to provide the following
guarantee: As long as the analyst chooses functions which, in the non-adaptive setting,
are concentrated around their expected value, then the answers given by the mechanism
should be accurate. Intuitively, the idea is that functions with large variance are hard
to approximate even in the non-adaptive setting, and hence, we should not require our
mechanism to approximate them well in the adaptive setting.

This is formalized as follows. For every query q and every distribution µ, we write
γ(q, µ, δ) to denote the length of a confidence interval around the expectation of q with
confidence level (1 − δ). That is, γ(q, µ, δ) is such that when sampling T ∼ µ, with
probability at least (1− δ) it holds that q(T ) is within γ(q, µ, δ) from its expectation. We
obtain the following theorem (see Section 7.2.7 for a precise statement).

Theorem 1.3.5 (informal). Fix α, δ > 0. There exists a computationally efficient mech-
anism with the following properties. The mechanism obtains a sample (an n-tuple) from
some unknown underlying distribution µ. Then, for k rounds i = 1, 2, . . . , k, the mecha-
nism obtains a query qi and responds with an answer ai such that

Pr[∃i s.t. |ai − qi(µ)| > α+ γ(qi, µ, δ)] ≤ δ · k · 2k·log
1
α .

Proving that there exists a computationally efficient mechanism for answering adaptive
queries, even for the case of non-zero dependencies, which error scales with γ. In partic-
ular, as long as the adversary poses queries qi such that γ(qi, µ, δ) ≤ α, our mechanism
guarantees that all of its answers are 2α-accurate, with high probability. The caveat here
is that for the probability to be high we must ensure that δ decays fast enough with the
number of queries at hand. This is easily obtained in many settings of interest by taking
the sample size n to be big enough. For example, for sub-Gaussian or sub-exponential
queries, we would get that δ vanishes exponentially with n, and hence, for large enough



CHAPTER 1. INTRODUCTION 18

n we would get the desired result.

We note that in the case of non-adaptive data analysis, learning from non-i.i.d samples is
a well-known problem that has been heavily studied in various directions. This includes
works on the Markovian criteria Marton (1996); Kontorovich and Raginsky (2017); Wolfer
and Kontorovich (2019); Juang and Rabiner (1991), as well as other criteria such as those
researched by Daskalakis et al. (2019); Dagan et al. (2019). These lines of work do not
transfer, at least not in a way that we are aware of, to the adaptive setting.

Bassily and Freund (2016) also studied the problem of adaptive data analysis with cor-
related observations; we now elaborate on the differences.

1. Results regarding transcript compression (Section 7.2) As we mentioned,
Bassily and Freund (2016) introduced the beautiful framework where the mech-
anism is required to provide accurate answers only as long as the analyst poses
"concentrated queries". They obtained their results for this setting via a new no-
tion they introduced, called typical stability. However, their analysis and definitions
are quite complex. We show that essentially the same bounds can be obtained in
a significantly simpler way, using standard compression tools. Specifically, our re-
sult (Theorem 1.3.5) recovers essentially the same bounds for all types of queries
considered by Bassily and Freund (2016), including bounded-sensitivity queries,
subgaussian queries, and subexponential queries. In addition to being significantly
simpler, our result offers the following advantage: Using the results of Bassily and
Freund (2016), we need to know in advance the parameter controlling the "concen-
tration level" of the queries that will be presented in runtime, and this parameter is
used by their algorithm. In contrast, our algorithm is oblivious to this parameter,
and the guarantee is that our accuracy depends on the "concentration level" of the
given queries. Furthermore, with our algorithm, different queries throughout the
execution can have different "concentration levels", a feature which is not directly
supported by Bassily and Freund (2016).

2. Results regarding Gibbs-dependence (Section 7.1). These results are in a
different setting than that of Bassily and Freund, and the results are not directly
comparable. In particular, Bassily and Freund do not study any specific dependence
notion, such as Gibbs dependence. Our results show that assuming low Gibbs
dependence allows for improved bounds. Specifically, Bassily and Freund (2016) can
answer at most Õ (n) adaptive queries efficiently, even if the dependencies within
the sample are very weak. Using our notion of Gibbs-dependency, we can answer
Õ (n2) adaptive queries efficiently, while accommodating small (but non-negligible)
dependencies.

The work in this chapter is joint with Aryeh Kontorovich and Uri Stemmer (ICML 2022).
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Literature Review

2.1 Compression Schemes

Background. It appears that generalization bounds based on sample compression were
independently discovered by Devroye and Wagner (1979) and Littlestone and Warmuth
(1986) (when the former dealt with nearest-neighbor rules and the latter with generic
learning algorithms), and further elaborated upon by Graepel et al. (2005); see Floyd
and Warmuth (1995) for background and discussion. A more general kind of Occam
learning was discussed in Blumer et al. (1989). Computational lower bounds on sample
compression were obtained in Gottlieb et al. (2014), and some communication-based lower
bounds were given in Kane et al. (2017).

Compression and Boosting. The idea of constructing compression schemes using
the boosting technique is known in the literature. The first mention of this connection
was made by Freund and Schapire (1997). In their seminal work they proved that boost-
ing is possible by answering an open question, suggested by Kearns and Valiant (1994).
Starting with Freund (1990) and later on with the construction of the famous AdaBoost
algorithm by Freund and Schapire (1997), the boosting mechanism relied on an interme-
diate construction, providing a compression scheme of size O (dC log n) for binary function
classes C with VC-dimension dC. Continuing this line of work, Moran and Yehudayoff
(2016) discuss the idea of leveraging this connection between boosting and compression,
and recognize that their main result can in fact be seen as a refinement of this connection.

Real-Valued Functions. Beginning with Freund and Schapire (1997)’s AdaBoost.R

algorithm, there have been numerous attempts to extend AdaBoost to the real-valued
case (Bertoni, Campadelli, and Parodi (1997); Drucker (1997); Avnimelech and Intrator
(1999); Karakoulas and Shawe-Taylor (2000); Duffy and Helmbold (2002); Kégl (2003);
Nock and Nielsen (2007)) along with various theoretical and heuristic constructions of

19
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particular weak regressors (Mason et al., 1999; Friedman, 2001; Mannor and Meir, 2002);
see also the survey Mendes-Moreira et al. (2012).

An explanation for the challenge of defining a good weak-learner was pointed and ex-
plained by Duffy and Helmbold (2002, Remark 2.1) we discuss this issue on 4.1.2. The
(η, γ)-weak learner, which has appeared, among other works, in Anthony et al. (1996);
Simon (1997); Avnimelech and Intrator (1999); Kégl (2003), gets around this difficulty,
but provable general constructions of such learners have been lacking. Likewise, the heart
of our sample compression engine, MedBoost, has been widely in use since Freund and
Schapire (1997) in various guises. Our Theorem 1.1.4 supplies the remaining piece of
the puzzle: any sample-consistent regressor applied to some random sample of bounded
size yields an (η, γ)-weak hypothesis. The closest analogue we were able to find was An-
thony et al. (1996, Theorem 3), which is non-trivial only for function classes with finite
pseudo-dimension, and is inapplicable, e.g., to classes of 1-Lipschitz or bounded variation
functions (see 4.2.3).

The literature on general sample compression schemes for real-valued functions is quite
sparse. There are well-known narrowly tailored results on specifying functions or approx-
imate versions of functions using a finite number of points, such as the classical fact that
a polynomial of degree p can be perfectly recovered from p+1 points. To our knowledge,
the only general results on sample compression for real-valued functions (applicable to
all learnable function classes) is Theorem 4.3 of David, Moran, and Yehudayoff (2016).
They propose a general technique to convert any learning algorithm into a compression
scheme. However, their notion of compression scheme is significantly weaker than ours:
namely, they only guarantee a bound on the average error rather than than our uniform
approximation requirement. In particular, in the special case of a family of binary-valued
functions, their notion of sample compression does not recover the usual notion of sample
compression schemes for classification, whereas our uniform ε-approximate compression
notion does recover it as a special case. We therefore consider our notion to be a more
fitting generalization of the definition of sample compression to the real-valued case.

Ashtiani et al. (2020) adopted the notion of a compression scheme to the distribution
learning problem. They showed that if a class of distributions admits robust compress-
ibility then it is agnostically learnable. They used those results in order to provide
state-of-the-art sample-complexity bounds for learning a mixture of Gaussians.
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2.2 Privacy

2.2.1 Background

The formal connection between differential privacy and learning theory was made by Ka-
siviswanathan et al. (2011), who proposed the Privately Probably Approximately Correct
learning model (PPAC for short). One of the fundamental results In the field of machine
learning is that the sample complexity of PAC learning is proportional to the Vapnik-
Chervonenkis (VC) dimension of the concept class being learned. Kasiviswanathan et al.
demonstrated that for any finite concept class, there exists a privacy-preserving learner
with sample complexity that is logarithmic in the size of the class. However, Beimel et al.
(2010) showed that while a non-private learner can properly learn the concept class of
point functions (which consists of functions that evaluate to 1 for a single element and
0 anywhere else) with a sample complexity of O(1), a pure differential private learner
requires a sample complexity of Ω(log(|X |)) for proper learning. Later on, Feldman and
Xiao (2015) demonstrated that this separation holds even for improper learning. It was
shown by Beimel et al. (2016a) that this gap can be made significantly smaller by relaxing
the privacy requirement to approximate privacy (i.e. δ > 0); nevertheless, there is still a
crucial gap for some classes.

Recently, it was proven by Alon et al. (2019); Bun et al. (2020b); Golowich and Livni
(2021) that private learning and online learning are equivalent. As online learning can be
characterized by the Littlestone dimension (Littlestone, 1988; Ben-David et al., 2009) thus
implying that private learning is possible if and only if for classes with finite Littlestone
dimension. Specifically, it was shown that the sample complexity of privately learning a
class C is at most poly(Ldim(C)) and at least log∗(Ldim(C)), when Ldim(C) represents the
Littlestone dimension of the class. Within this large quantity gap, the exact dependency
of sample complexity on the Littlestone dimension is unknown. Exploring the relationship
between sample complexity and measures such as Littlestone dimension, VC dimension,
and potentially other measures is an essential open question in the field.

2.2.2 Alternative models

In recent years several variants and modifications have been proposed for the initial
definition of differential privacy.

Rényi differential privacy (Mironov (2017)). One main variant of differential pri-
vacy is the Rényi differential privacy (RDP for short). This definition utilizes the notion
of Rényi divergence, a measure of the difference between two probability distributions.

Definition 2.2.1 (Rényi divergence). Given two discrete distributions P = {p1, . . . , pn},
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Q = {q1, . . . , qn} The α-Rényi divergence of P and Q is defined as

Dα(P ,Q) :=
1

1− α
log

(
n∑
i=1

pαi
qα−1i

)

When for α ∈ {0, 1,∞} is defined by taking a limit 1.

Recall that pure epsilon-differential privacy can be stated as a bound on the privacy
loss function, i.e. log Pr(M(S)∈F )

M(S′)∈F ≤ ε for any two neighboring data sets S, S ′. In a
similar manner, an algorithm will be said to preserve (α, ε)-Rényi differential privacy,
requiring instead that the Rényi divergence betweenM(S) andM(S ′) be bounded by ε,
Dα(M(S),M(S ′)) ≤ ε. It can be shown that if α is taken to infinity we get D∞(P ,Q) =
log supi∈[n]

pi
qi

(van Erven and Harremoës, 2012); hence, (∞, ε)-Rényi differential privacy
is equivalent to ε-differential privacy.

It was shown by Mironov (2017) that any (α, ε)-Rényi differential private algorithm is also
(ε′, δ)-differentially private for ε′ = ε+ log(1/δ)

1−α , hence, Rényi differential privacy can be seen
as an intermediate notion between pure and approximate differential privacy. Moreover,
its composition properties are easy to calculate, making it practically appealing. In
addition to this definition, additional variants to the basic definition of differential privacy
have been defined in recent years. Among them, we can mention concentrated differential
privacy (zCDP) (Bun and Steinke, 2016), Gaussian differential privacy (f-DP) (Dong
et al., 2019) and fuzzy differential privacy (Hou et al., 2022).

Local differential privacy (Kasiviswanathan et al. (2011)). Recall that differ-
ential privacy is based on the assumption that a trustworthy curator with access to
all private information is responsible for collecting the data. Local differential privacy
(Local-DP or LDP for short) is a variant of differential privacy that removes this assump-
tion, requiring that the process of data collection itself preserves privacy. Historically,
The first well-known privacy-preserving statistical mechanism, the “randomized response”,
proposed by Warner (1965) and Greenberg et al. (1969), was in fact locally private. In
recent years, since its first formulation by Evfimievski et al. (2003) and Kasiviswanathan
et al. (2011), the local model has gained great popularity in the world of research. Further-
more, it has found many uses in industry and in practical applications (see Acharya et al.
(2020); Bureau (2021a); Erlingsson et al. (2014b); Murakami and Kawamoto (2019)). The
model allows companies to guarantee their users that the personal information collected
while using the various services cannot be exposed even in the event of malicious use of
their own servers. The main caveat of the local model is that it is a stricter notion of
privacy and thus can result in significantly reduced utility.

1The definition can be extended to continuous random variables but for the sake of simplicity we
present it on its discrete form.
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The shuffle model of differential privacy. This problem is addressed by another
model, known as the shuffle model Cheu et al. (2018); Bittau et al. (2017); Erlingsson
et al. (2018). In this model, each user adds some auxiliary randomness to their
information before sending it to an intermediate server. This randomness is combined
with the actual data, and the intermediate server shuffles all of the inputs together before
transmitting them to the main server. By including random data from each user, the
shuffle model helps to obscure any individual user’s contribution to the final result. It was
shown by Cheu et al. (2018) that for some problems this model can achieve significantly
better accuracy than the local model (see Cheu (2021) for a survey of results on such
separations). The main disadvantage of the model, compared to the above local model,
is that users have to trust the auxiliary server, both in terms of its reliability and in
terms of the correctness of its implementation. Nevertheless, the shuffle model is of main
interest in the privacy community (see Balle et al. (2020); Feldman et al. (2020b); Balle
et al. (2019)).

2.2.3 Basic Differentially Private Tools

The inclusion of a privacy requirement necessitates the adaptation or reconstruction of
statistical analyses and learning mechanisms, as they can no longer be utilized in their
current form. As a result, in the past several years there was a tremendous effort of the
research community to provide the fundamental building blocks of private statistics and
private learning.

The Laplace mechanism Dwork et al. (2006b). In their seminal paper, Dwork
et al. proposed the Laplace mechanism, which provides a way of answering queries as
long as their sensitivity to changes in input is not high. One useful basic example which
can be solved using the Laplace mechanism is answering counting queries, which simply
asks for the number of points in the data which satisfies a certain property. It can be
easily seen that this type of query has low sensitivity, any single change in the data will
not change the count by more than 1, implying the need for a relatively small amount
of noise added by the Laplace mechanism. Although very basic, counting queries are
important primitives which can be composed into more complex algorithms, hence the
ability to perform them in a privacy-preserving manner is highly important. Differential
privacy can be composed by running several such primitives, resulting in a complex private
mechanism which privacy parameters can be computed using the composition theorem
(Dwork et al., 2006b, 2010a). Another, commonly used, set of functions that also enjoys
low sensitivity is the histogram query. This defines a partitioning of the space into bins
and then asks how many points in the data fall inside a specific bin. As in the case of
counting queries, histogram queries enjoy low sensitivity to changes in the input data,
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and therefore each query can be answered with a small amount of noise added. In the
case of large or even infinite spaces, the number of bins can be too large to answer all. In
such a case, the notion of approximate privacy can be utilized using the Stability-based
histogram algorithm Bun et al. (2019c), which essentially ignores almost the entire space
and takes into account only the part of the support which has high probability mass.

The Exponential Mechanism McSherry and Talwar (2007). Later on, McSherry
and Talwar proposed the Exponential Mechanism, a generic technique which able to tackle
a wide range of tasks. The exponential mechanism, although it is often inefficient, as its
run-time depends on the size of the space, can be used in an even broader set of tasks. A
significant example is the one of private median estimation. The median, as opposed to
the average, can be highly sensitive and hence can not be computed privately using the
Laplace mechanism, yet it can be computed using the exponential mechanism.

The Sparse Vector technique (Dwork et al., 2009). Another primitive technique
is the sparse vector technique by Dwork et al. (2009). Its main purpose is to answer only
queries whose value is above some given threshold. The sparse vector technique allows
the algorithm to “pay”, in privacy, only for the queries which do pass the threshold and
not for the entire stream of queries, which may be much larger. This technique lies at the
core of several important works, including the private multiplicative weights mechanism
by Hardt and Rothblum (2010).

Empirical Risk Minimization Another highly important task is the one of empirical
risk minimization (ERM) which lies at the core of learning theory. The main setting
involves an instance space and data set and a metric of the closeness of a prediction to the
true label value called the loss function (see Section 3 for precise setting and definitions).
The problem is to find a hypothesis or a vector, in the case of linear prediction, in which
cumulative loss on the data set is minimal.

For bounded loss functions which are also Lipschitz, this task can be done using the
exponential mechanism (Bassily et al., 2014). In order to solve the task in a broader set-
ting and with better parameters, Song et al. (2013) introduced the Differentially-Private
Stochastic Gradient Descent (DP-SGD), a private variant of the celebrated gradient de-
scent algorithm used widely for almost every deep-learning framework. The DP-SGD
mechanism has been thoroughly studied, and various modifications suggested through
the years, in order to improve the utility-privacy trade-off in general or for specific set-
tings (Abadi et al., 2016; Wang et al., 2019; Jayaraman and Evans, 2019; Kairouz et al.,
2021; Liu and Lu, 2021).
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2.2.4 Current research directions

In recent years, research and development in the field of privacy have experienced signif-
icant growth, both in theoretical and practical aspects. On the theoretical side, several
significant results can be mentioned:

Characterization of Private Learning. First, as mentioned above, the line of re-
search attempting to characterize what can be learned in a way that preserves privacy
still includes some crucial gaps. Despite the recent breakthroughs that have shown that
private learning is equivalent to online learning, i.e., is possible if and only if the Lit-
tlestone dimension of the class is finite, there is still a gap when it comes to the exact
quantification of the connections (Alon et al., 2022; Ghazi et al., 2020).

Private Convex Optimization. As a continuation of the results concerning empirical
risk minimization, which often relies on the DP-SGD algorithm, a fairly significant part of
the research deals with the subject of private convex optimization. This area of research
deals with the different ways to find optimal solutions (maximum or minimum) of convex
functions. These problems, which are at the heart of many fields even beyond the ERM
problem, are of great importance to the research world. Many natural scenarios can
be formulated in this framework, such as the support vector machine algorithm (SVM)
(Shalev-Shwartz and Ben-David, 2014), network-flow optimization (Wei et al., 2017),
image denoising (Thanh et al., 2019) and much more. Therefore, it is important to find
solutions that also meet the demand for privacy. To name a few key results from the last
few years, we can point to Kifer et al. (2012); Iyengar et al. (2019); Bassily et al. (2021,
2019a); Feldman et al. (2020a); Kulkarni et al. (2021); Wu et al. (2016).

2020 United States census. On the practical side, the latest highlight was the tran-
sition of the US Central Bureau to the use of differential privacy in order to preserve
the privacy of those surveyed in the 2020 census. The census, which takes place once
a decade, is required by law to prevent harm to the privacy of those who participate
(Bureau, 2021c). In previous surveys various privacy heuristics were used, but after a
long discussion it was decided to change the methodology and use differential privacy.
The project, perhaps the largest routine statistical project in the United States, required
the Central Bureau of Statistics to integrate various tools from the literature within an
analysis platform that would be accessible to the general public of researchers, most of
whom had no prior knowledge of differential privacy (Bureau, 2021b). The great ap-
plied challenge constitutes a significant milestone on the way to the assimilation of the
paradigm as an essential tool in additional concrete statistical analyses.
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Deep Learning. As part of the applied research in the field of privacy, similar to the sit-
uation in the machine learning community, the focus of interest is in deep learning. As we
mentioned above, at the center of the research is the DP-SGD algorithm and attempts to
improve it so that it enables increasingly better performance, under the same privacy con-
straints. The fundamental problem of image classification is considered a central test case.
Prior work on differentially-private deep learning by Abadi et al. (2016) demonstrated its
use on the standard image classification benchmark data sets - MNIST and CIFAR-10.
On the MNIST data set, which is considered an easy task, the authors achieved 0.9,
0.95, and 0.97 test set accuracy for (0.5, 10−5), (2, 10−5) and (8, 10−5)-differential privacy,
respectively. On the more challenging CIFAR-10, the authors achieved accuracy of 0.67,
0.7, and 0.73, for (2, 10−5), (4, 10−5), and (8, 10−5)-differential privacy, respectively. This
is a significant gap from the non-private state-of-the-art which is currently 0.9991 for
MNIST and 0.995 for CIFAR-10 (An et al., 2020; Dosovitskiy et al., 2020). These results
had repeatedly been improved up until the recent work by Balle et al. (2022a), which in-
troduced a differentially private model based on a 40-layer Wide-ResNet neural network,
achieving 0.814 accuracy under (8, 10−5)-differential privacy for CIFAR-10. Some more
recent works propose different techniques in order to even further improve those results,
using pre-training on non-private data, hyperparameter tuning, and so on (see Kurakin
et al. (2022)).

Attacks. Parallel to this direction, many studies deal with presenting the problems
of using algorithms that do not preserve privacy. The research in this direction revolves
around the idea of reconstruction attacks and membership attacks. These attacks recover
parts of the information from the models and the information that is traditionally released
to the network openly, together with the non-private models. Certain attacks succeed
in identifying, with high probability, whether information about a certain individual
appeared in the database that was used (Shokri et al., 2017; Hu et al., 2022; Carlini
et al., 2021; Choquette-Choo et al., 2020). Other attacks perform the reconstruction of
images that appeared in the database on which models were trained to classify images
(Balle et al., 2022b) and some attacks reconstruct words that appeared in the database on
which language models were trained (Carlini et al., 2020). Recently, studies have also been
done that leverage the idea of reconstruction attacks to try and quantify the relationship
between privacy parameters and the likelihood or extent of information leakage from
algorithms that preserve differential privacy (Hannun et al., 2021; Guo et al., 2022).

2.2.5 Open questions on the private learning domain

Research on differential privacy continues to advance with significant momentum in recent
years. At the same time, many questions are still open and serious challenges are still
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facing the field. Fundamental questions are at the center of attention and require in-
depth research. Problems exist, such as quantitative characterization of private learning,
learning in models other than the classic PAC model, and understanding the meaning
and connections between the various models, to name a few central issues.

In the applied direction, there is still a long way to go. A series of open-source libraries
for implementing privacy-preserving algorithms are gaining momentum, but they are not
yet complete. There is a requirement to understand the appropriate parameters for the
various research and statistical needs. In addition, there is a fundamental need to find
ways to improve the performance of privacy-preserving deep learning algorithms, so that
they can be used in the various fields at the center of technological practice today, such
as advanced classification models, large language models, and generative models.

2.3 Universal learning

Despite the dominance of the PAC model since its definition in the 1980s, over the years
many criticisms have been heard (Buntine; Sarrett and Pazzani, 1989; Cohn and Tesauro,
1992a, 1990a). The main argument was that the model is too pessimistic, and that in
reality the results are often fundamentally different from those obtained in the theory
that derives from this definition.

For these reasons, Bousquet et al. proposed a relaxed model which they called Universal
Learning. In this paper, the authors point out that in very natural cases the rate of
convergence of different learning algorithms is several orders of magnitude faster than
that which results from a pessimistic calculation under the definition of the PAC model.
Hence, the main idea of the universal learning model is to allow the studied learning rate
to depend not only on the class at hand but also on the distribution in the background.
This idea also corresponds to the practical conduct in which the distribution does not
change throughout the learning process but is fixed in the background, and only the
sample size increases as needed.

This concept of learning rates that depend on the distribution (in contrast to the distribution-
free nature of the PAC model) is not new. The classical notion of bayes-consistency defines
a close model. The main difference is that Bayes consistency sets the class of functions
to be learned to be the class of all measurable functions, as opposed to the universal
learning model which allows for a more specific choice of classes.

The notion of Bayes consistency is one of the initial definitions of learning theory and
can be found in the classical works of Fisher (1922); Stone (1977); Cover and Hart (1967)
and Fix and Hodges (1989). After the introduction of the PAC model, the consistency
definition was pushed aside and its study became secondary and less common. For this
reason, the current literature dealing with this subject is quite sparse.
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As for the study of private learning in a distribution-dependent context, prior work in
this vein focused on obtaining better utility guarantees under the assumption that the
underlying distribution adheres to certain "niceness" assumptions; for example margin
assumptions. That is, these works do not aim to learn under any underlying distribution
as we do, only under "nice" distributions. For example, private learning under margin
assumptions was considered by Blum et al. (2005); Chaudhuri et al. (2014); Bun et al.
(2020a); Nguyen et al. (2020), and private clustering under data stability assumptions
was previously considered by Nissim et al. (2007); Wang et al. (2015); Huang and Liu
(2018);Shechner et al. (2020); Cohen et al. (2021); Tsfadia et al. (2021). Another related
work is by Haghtalab et al. (2020) who studied smooth analysis in the context of private
learning, where the input points are perturbed slightly by nature. This is equivalent to
assuming that the underlying distribution is not overly concentrated on any single point,
which is similar in spirit to margin assumptions.

Parallel to our research and independently, this definition was investigated in a series of
articles by Györfi and Kroll (2023, 2022) and Berrett and Butucea (2019). The results
in these papers are very similar to ours, but with several differences. In terms of privacy,
while we have focused on analyzing the curator model of differential privacy, Györfi and
Kroll (2023, 2022) and Berrett and Butucea (2019) have primarily focused on local pri-
vacy. Also, they did a minimax analysis of the convergence rates for a specific family of
density functions, while our focus was to demonstrate the possibility of private learning
under the universal definition. In addition, they have proven results for regression prob-
lems, which is not the case in our research. Furthermore, while we used approximate
privacy for density estimation, they focused on pure privacy only. On the other hand, for
the classification case, we have shown results for general, metric (doubling) unbounded
spaces, a property from which the construction and results of Györfi and Kroll (2023,
2022) and Berrett and Butucea (2019) do not benefit. Overall, our results provide a
complementary perspective to their findings. Together, they provide a comprehensive
perspective on the privacy analysis of machine learning algorithms, using this univer-
sal learning model to highlight the importance of considering different privacy metrics,
problem types, and analysis techniques.

2.4 Adaptive data analysis

A classical technique used for multiple hypothesis testing is the Dunn-Bonferroni correc-
tion (Shaffer, 1995; Dunn, 1961), whose usage is limited due to the fact that it signifi-
cantly reduces the number of discoveries. A more robust type suite of techniques is the
false-discovery-rate (FDR) control method, such as the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) and the Bayesian approach by Storey (2003). Those
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methods focus mainly on statistical inference approaches such as hypothesis testing, con-
fidence intervals etc., and are still a subject of active research (see also Li and Barber
(2017); Javanmard and Montanari (2015)).

The different generic approach, which we also take here, uses the notion of algorithmic
stability. Algorithmic stability is known to be intimately connected (and, in some settings,
equivalent) to learnability (Bousquet and Elisseeff, 2002b; Shalev-Shwartz et al., 2010).
Most of the existing stability notions, however, are not sufficient for our goal of adaptive
learnability. For example, uniform stability, which has recently been the subject of several
interesting results, is not closed under post-processing and does not yield the same type of
adaptive generalization bounds as we study in this paper (Bousquet and Elisseeff, 2002a;
Shalev-Shwartz et al., 2010; Hardt et al., 2016; Feldman and Vondrák, 2018, 2019). A
notable exception is local statistical stability, which was shown to be both necessary and
sufficient for adaptive generalization (Shenfeld and Ligett, 2019). However, so far, local
statistical stability has not yielded new algorithmic insights.

A different line of research employs information-theoretic techniques, whereby overfitting
is prevented by bounding the amount of mutual information between the input sample
and the output hypothesis. However, these techniques generally only guarantee general-
ization in expectation, rather than high probability bounds (Russo and Zou, 2016; Xu
and Raginsky, 2017; Rogers et al., 2016; Raginsky et al., 2016; Russo and Zou, 2019;
Steinke and Zakynthinou, 2020).

The formulation of the adaptive data analysis we consider was introduced by Dwork
et al. (2015b) (in the context of i.i.d. sampling), and has since then been the subject
of many interesting papers (Bassily et al., 2016; Bun et al., 2018; Hardt and Ullman,
2014; Ullman et al., 2018; Shenfeld and Ligett, 2019; Jung et al., 2020; Shenfeld and
Ligett, 2021). The connection between differential privacy and adaptive generalization
also originated from Dwork et al. (2015b). Interestingly, this connection has recently been
repurposed for different settings, such as adversarial streaming and dynamic algorithms
(Hassidim et al., 2020; Attias et al., 2021; Kaplan et al., 2021; Beimel et al., 2021), and
also in a preprint by the author, Uri Stemmer and Moshe Shechner, named Streaming
with advice which is currently under review. We note that while this work by the author
is relevant to the broader topic of privacy and compression, it was not included in this
thesis due to its focus on a different aspect of the subject. Nonetheless, the findings have
potential for further exploration and development and may be a valuable contribution to
the field.



Chapter 3

Background and Preliminaries

This chapter details some preliminaries needed for a proper presentation of the results
and discussion in the main part of the thesis. Some more specific preliminaries will be
presented on the dedicated chapter in which they are relevant. An instance space is an
abstract set X and a classifier is a binary function mapping points from the space to
either zero or one f : X → {0, 1}.

3.1 Learning

3.1.1 The PAC Model and the VC Dimension

We use standard definitions from statistical learning theory. See, e.g., Shalev-Shwartz
and Ben-David (2014).

The main goal of a classifier is to correctly predict the label of future points. Nevertheless,
its performance in the current given sample serves as a starting point and a measure which
might indicate its true performance.

Definition 3.1.1 (Sample error). The empirical error of a classifier h w.r.t. a labeled-
sample S ∈ (X × {0, 1})n is defined as errS(h) =

1
n

∑
(x,y)∈S 1[h(x) ̸= y].

Definition 3.1.2 (True error). Given a data distribution µ and a hypothesis h we denote
errµ(h) = E(x,y)∼µ[1[h(x) ̸= y]]. Given a data distribution µ, an algorithm A, and sample
size n, define

errµ(A, n) = E
S∼µn

E
hS←A(S)

[errµ(hS)] = E
S∼µn

E
hS←A(S)

E
(x,y)∼µ

[1[hS(x) ̸= y]].

In words, errµ(A, n) is the expected loss of A given n labeled examples from µ.

The main definition at the core of statistical learning literature is PAC learning. The
definition aims to capture, in a quantifiable manner, what it essentially means to learn

30
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from the algorithmic perspective.

Definition 3.1.3 (PAC learnability Valiant (1984)). Let α, β ∈ [0, 1] and let m ∈ N. An
algorithm A is an (α, β,m)-PAC-learning algorithm for a class C if for every distribution
µ over X ×{0, 1} s.t. ∃h∗ ∈ C with errµ(h

∗) = 0, it holds that PrS∼µm [errµ(A(S)) > α] <

β. We refer to m as the the sample complexity of A.

In simple terms, a PAC learner is an algorithm that takes a labeled dataset as input and
produces a classifier as output, which is guaranteed to predict the label of new instances
with high probability. Since the seminal work by Vapnik and Chervonenkis, one main idea
in the research of learnability of function classes is by trying to measure the complexity
or the expressability of a function class. This is usually done using the combinatory idea
of shattering.

Definition 3.1.4 (Shattering). Let C be a class of functions over a domain X . A set
S = (s1, . . . , sk) ⊆ X is said to be shattered by C if |{(f(s1), . . . , f(sk)) : f ∈ C}| = 2k.

Using the idea of shattering, Vapnik and Chervonenkis defined their famous notion of
dimension for function classes.

Definition 3.1.5 (VC Dimension Vapnik and Chervonenkis (1971)). The VC dimension
of a class C, denoted as dC, is the cardinality of the largest set shattered by C. If C shatters
sets of arbitrary large cardinality, then it is said that dC =∞.

When the roles of X and C are exchanged, i.e., an x ∈ X acts on f ∈ C via x(f) = f(x),
we refer to X = C∗ as the dual class of C. Its VC-dimension is then d∗C := dC∗ , and referred
to as the dual VC dimension. Assouad (1983) showed that d∗C ≤ 2dC+1.

To illustrate this concept intuitively, consider the simple function class of one-dimensional
intervals on the real line. In this case, the VC dimension can be easily grasped. Let H
be the set of all intervals of the form [a, b], where a and b are real numbers. An interval
classifier labels by 1 any point which lays inside the interval and 0 for any other point.
It is clear that if we take two distinct points x1 and x2 in the real line such that, w.l.o.g,
x1 < x2, we can find intervals in H that can shatter them. specifically:

• The interval [x1 − 2, x1 − 1] labels the pair by (0, 0).

• The interval [x1 − 1, x1] labels the pair by (0, 1).

• The interval [x2 + 1, x2 + 2] labels the pair by (1, 1).

• The interval [x2, x2 + 1] labels the pair by (1, 0).

In other words the pair x1 and x2 can be labeled by any possible sequence of binary
sequence of the same length. But, given a triplet x1 < x2 < x3 there is not interval in H
that can label them (1, 0, 1). As the size of the smallest set that can be shattered by H
is 2, the VC dimension of H is 2.
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The main result that emerged from the VC-theory is that, in classes with a finite VC-
dimension, it is possible to bound, with high probability, the gap between the empirical
risk and the true risk of the classifier, also known as the generalization gap, meaning that
such classes are PAC-learnable.

Theorem 3.1.6 (VC Dimension Generalization Bound Vapnik and Chervonenkis (1971);
Blumer et al. (1989)). Let C be a function-class and let µ be a probability measure over
X ×{0, 1}. There exist a constant c s.t. for every n ≥ c

α

(
dC log(

1
α
)+log( 1

β
)
)

every α, β >
0, and every f ∈ C it holds that PrS∼µn [∃f ∈ C : errµ(f) ≥ α ∧ errS(f) ≤ α/10] ≤ β.

When dealing with real-valued functions, in contrast to the binary function of VC-theory,
the notion found to be best suited as an analog is fat-shattering.

Definition 3.1.7 (Fat-Shattering (Alon et al., 1997)). For F ⊂ RX and t > 0, we say that
F t-shatters a set {x1, . . . , xk} ⊂ X if there is an r ∈ Rm such that for all y ∈ {−1, 1}m

there is an f ∈ F such that mini∈[k] yi(f(xi)− ri) ≥ t, when [k] := {1, . . . , k}.

That is, fat-shattering looks for expressability of the functions in the class as threshold
functions with a given margin or scale. Again, this shattering notion is the basis for
a dimension which characterizes learnability for real-valued function classes, just as the
VC-dimension does for binary functions.

Definition 3.1.8 (Fat-Shattering dimension (Alon et al., 1997)). The t-fat-shattering
dimension Fatt (F) is the size of the largest t-shattered set (possibly ∞) . Again, the
roles of X and F may be switched, in which case X = F∗ becomes the dual class of F .
Its t-fat-shattering dimension is then Fat∗t (F). 1

To demonstrate this concept intuitively, consider the class of affine functions on the real
line. Given a pair of points x1 and x2 the pair is γ-shattered by the class for any given γ.
A visual illustration of this is given in Figure 3.1 on which two example points x1, x2 are
given and the 4 affine functions shatter the pair (each function labeled by the resulting
pair’s labeling) and the points r1, r2 witness the shattering as described in the above
definition.

3.1.2 Compression Schemes

The formal notion of compression scheme, which was defined by Littlestone and War-
muth (1986) is the following: A sample compression scheme (κ, ρ) for a hypothesis
class F ⊂ YX is defined as follows. A k-compression function κ maps sequences S =

((x1, y1), . . . , (xm, ym)) ∈
⋃
ℓ≥1(X ×Y)ℓ to elements in K =

⋃
ℓ≤k′(X ×Y)ℓ×

⋃
ℓ≤k” {0, 1}

ℓ,

1It was proven by Kleer and Simon (2021) that it is impossible to obtain general bounds on the dual-
fat-shattering dimension, similar to the one proven by Assouad (1983) for VC-dimension. Nevertheless,
bounds do exist for some natural classes. To demonstrate this, in Section 4.2.3 we prove such bounds
for the dual class of two fundamental classes: Lipschitz functions and bounded-variation functions.
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Figure 3.1: Fat-shattering illustration

where κ(S) ⊆ S and k′ + k” ≤ k. A reconstruction is a function ρ : K → YX . We say
that (κ, ρ) is a k-size sample compression scheme for F if κ is a k-compression and for
all h∗ ∈ F and all S = ((x1, h

∗(x1)), . . . , (xm, h
∗(ym))), we have ĥ := ρ(κ(S)) satisfies

ĥ(xi) = h∗(xi) for all i ∈ [m].

For real-valued functions, there are several notions of compression-schemes. We say it is
a uniformly ε-approximate compression scheme if

max
1≤i≤m

|ĥ(xi)− h∗(xi)| ≤ ε.

We note that a somewhat similar definition was proposed by David et al. (2016): Let
S = (x1, yi), . . . , (xm, ym) be a tagged sample drawn i.i.d from some unknown distribution,
an let l : X × R → R be some loss function. We say that (κ, ρ) is an agnostic sample
compression scheme for H if, for every sample S, fS := ρ(κ(S)), achieves F -competitive
empirical loss:

1

m

m∑
i=1

l(fS(xi), yi) ≤ inf
h∈H

1

m

m∑
i=1

l(fS(xi), yi),

and we say that it is ϵ-Approximate Agnostic Sample Compression Scheme for H if for
every sample S

1

m

m∑
i=1

l(fS(xi), yi) ≤ inf
h∈H

1

m

m∑
i=1

l(fS(xi), yi) + ϵ.

3.1.3 Bayes optimal Classifier and Plug-in Estimators

PAC learnability and VC-theory have been the main vanilla settings in the research
community in the last decades. Nevertheless, there are other notions and regimes in the
learning literature. The principal notion of learning, which predated the PAC-learning
idea, is consistency. The main difference between consistency and PAC is that, while PAC
aims for distribution-free and uniform rates for a given class of functions, consistency looks
for distribution dependent rates without looking at a specific types of functions. This
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direction is most known in the context of analyzing classical learning algorithms such
as the Nearest Neighbor rule, for which the arguments and tools from the PAC-model
and VC-theory are irrelevant (Devroye and Györfi, 1985; Cover and Hart, 1967; Gottlieb
et al., 2013).

Given a probability measure µ over X × {0, 1}, we denote by η the regression function,
also known as the posteriori probability function, defined as η(x) = Pr(y = 1 | x). The
Bayes-optimal classifier is, then,

h∗(x) =

1 η(x) > 1/2

0 otherwise
,

and we denote its error probability by L∗ = errµ(h
∗). It can be easily shown that h∗

achieves the lowest error-rate among all the possible classifiers.

Definition 3.1.9. An algorithm A is said to be universally consistent if for any distri-
bution µ it holds that limn→∞ {errµ(A, n)} = L∗.

As η is generally unknown, a possible approach for designing universally consistent algo-
rithms is to create an approximation η̂.

Definition 3.1.10. Let η̂ : X → [0, 1] be any function. A plug-in classification rule w.r.t.

η̂ is defined as ĥ(x) =

1 η̂(x) > 1/2

0 otherwise
.

The following theorem provides a bound on the error-rate of such a construction.

Theorem 3.1.11 (Devroye et al. (2013, Theorem 2.2)). Let η̂ : X → [0, 1] be any function
and let ĥ be its corresponding plug-in classification rule. Then, errµ(ĥ) − errµ(h

∗) ≤
2E [|η(x)− η̂(x)|] , where the expectation is over sampling x from the marginal distribution
on unlabeled examples from µ.

In Devroye et al. (2013), the above theorem is stated only for Rd. The extension to
arbitrary spaces is immediate; the details are given in Section 6.4 for completeness.

3.1.4 Density Estimation

In the problem of density estimation, given a sample containing n iid (unlabeled) elements
from an (unknown) underlying distribution µ, our goal is to output a distribution µ̂ that
is close (in L1 distance) to the underlying distribution µ.

Definition 3.1.12. An algorithm is said to be universally consistent for density estima-



CHAPTER 3. BACKGROUND AND PRELIMINARIES 35

Algorithm 1 Game(M, k,A, S)
Inputs: MechanismM, interaction length k, adversary A, dataset S.
The dataset S is given toM.
for i ∈ [k] do

A picks a query qi.
The query qi is given toM.
M outputs an answer ai.
The answer ai is given to A.

tion in L1 norm if for any underlying distribution µ the following holds.

lim
n→∞

E
S∼µn

E
µn←A(S)

∥µ− µn∥1 = lim
n→∞

E
S∼µn

E
µn←A(S)

∫
|µ(x)− µn(x)|dx = 0.

Our main metric for similarity between probability measures will be the total variation
distance.

Definition 3.1.13 (Total Variation Distance). Given two measures ν and µ on the
same space Ω, the total variation distance between them is defined as ∥ν − µ∥TV :=

supA⊆Ω|ν(A) − µ(A)|, where the supremum is over the Borel sets of Ω. Equivalently,
∥ν − µ∥TV = 1

2

∑
a∈Ω|ν(a)− µ(a)| =

1
2
∥µ− ν∥ℓ1 .

3.1.5 Adaptive Data Analysis

The standard formulation of adaptive data analysis is defined as a game involving some
(adversary) analyst and a query-answering mechanism. In the interests of this part of the
thesis, queries are statistical queries, meaning they are functions of the form q : X → [0, 1].
The goal of the mechanism is to make sure that the answers provided to the analyst
are accurate w.r.t. the expected value of the corresponding queries over the underlying
distribution. The idea is to formalize a utility notion that holds for any strategy of the
data analyst. As a way of dealing with worst-case analysts, the analyst is assumed to be
adversarial in that it tries to cause the mechanism to fail. If a mechanism can maintain
utility against any such adversarial analyst, then it maintains utility against any analyst.
This game is specified in Algorithm 1.

Definition 3.1.14 (Adaptive Empirical Accuracy). A mechanismM is (α, β)-empirically
accurate for k rounds given a dataset of size n, if for every dataset S of size n and
every adversary A, it holds that PrGame(M,k,A,S)

[
maxi∈[k]|qi(S)− ai| > α

]
≤ β, where

qi(S) :=
1
|S|
∑

x∈S qi(x).

Definition 3.1.15 (Adaptive Statistical Accuracy). A mechanismM is (α, β)-statistically
accurate for k rounds given n samples with Gibbs-dependence ψ, if for every distribution
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µ over n-tuples with Gibbs dependency ψ, and every adversary A, it holds that

Pr
S∼µ

Game(M,k,A,S)

[
max
i∈[k]
|qi(µ)− ai| > α

]
≤ β,

where qi(µ) := ET∼µ[qi(T )] = ET∼µ
[

1
|T |
∑

x∈T qi(x)
]
.

Remark 3.1.16. The above definition is stated in general form, but in fact it is suffi-
cient to show that a mechanism M exhibits the above guarantee for every deterministic
adversary A. The reason is that for a randomized adversary one can fix the adversary’s
random coins and use the total probability law in order to get the same result.

3.2 Differential privacy

Differential privacy (Dwork et al., 2006b) is a mathematical definition of privacy that
aims to enable statistical analyses of datasets, while providing strong guarantees that
individual-level information does not leak. Informally, an algorithm that analyzes data
satisfies differential privacy if it is robust in the sense that its outcome distribution does
not depend "too much" on any single data point. Formally,

Definition 3.2.1 (Differential Privacy (Dwork et al., 2006b)). A randomized algorithm
A : X n → Y is (ε, δ)-differentially private if for every two datasets S, S ′ which differ on
a single element and for any event F we have Pr[A(S) ∈ F ] ≤ eε · Pr[A(S ′) ∈ F ] + δ.

Two datasets S, S ′ ∈ X are said to be neighboring if they differ exactly on one element,
formally, dH(S, S ′) = 1.

Definition 3.2.2 (Dwork et al. (2006c)). Let f be a function mapping databases to real
vectors. The global sensitivity of f is defined as GS(f) = maxdH(S,S′)=1 ∥f(S)− f(S ′)∥1.

3.2.1 Properties and basic tools of Differential privacy

When dealing with the privacy of released information and statistics, we must account for
future unknown attacks. This implies that every reasonable protection guarantee must
not break under post-process of any kind. Hence, an important property of differential
privacy is the following:

Theorem 3.2.3 (post-processing). Let A : X n → Y be an (ε, δ)-differentially private
algorithm, and let f : Y → Y ′ be any arbitrary mapping. Then f ◦ A : X n → Y ′ is also
(ε, δ)-differentially private.

We will later make use of several differentially private algorithms combined, all applied
upon the same data, in parallel or even in an adaptive-sequential manner. Even so,
the combined process will remain privacy preserving (for different parameters) due to
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differential privacy been preserved under composition. Formally,

Theorem 3.2.4 (Advanced Composition, (Dwork et al., 2010a)). Let 0 < δ′, ε ≤ 1, and
let 0 ≤ δ′, ε ≤ 1. An algorithm which permits k adaptive interactions with (various)
mechanisms which preserve (ε, δ)-differential privacy, is then (ε′, kδ + δ′)-differentially
private by itself, when ε′ = ε

√
sk ln(1/δ′) + 2kε2.

We write Lap(µ, b) to denote the Laplace distribution with mean µ and scale b. When
the mean is zero, we will simply write Lap(b). The Laplace distribution lies at the core
of many algorithms from the differential private literature, and most notably as used in
the generic Laplace mechanism.

Definition 3.2.5 (The Laplace mechanism (Dwork et al., 2006c)). Let f be a function
mapping databases to vectors in Rk, and let ε be a privacy parameter. Given an input
database S, the Laplace mechanism outputs Mε(f, S) = f(S) + (a1, . . . , ak), when ai are
sampled i.i.d. from Lap(GS(f)/ε).

Theorem 3.2.6 (Dwork et al. (2006c)). The Laplace mechanism is ε-differentially pri-
vate.

One of the most basic and generic tools in the literature on differential privacy is the
exponential mechanism of McSherry and Talwar (2007), defined as follows. Consider a
"quality function" f that, given a dataset S, assigns every possible solution a (coming
from some predefined solution-set A) a real valued number, identified as the "score" of
the solution a w.r.t. the input dataset S. The goal is to privately identify a solution
a ∈ A with a high score f(S, a). The mechanism itself simply picks a solution at random,
where the probability for solution a is proportional to eεf(S,a). As shown by McSherry
and Talwar (2007) the exponential mechanism is (ε, 0)-differentially private.

3.2.2 Private Learning

Combining the ideas from privacy and learning research yields the natural idea of private
learning. The vast majority of the research in recent years showing interested in this link
revolves around the definition of Private-PAC learnability.

Definition 3.2.7 (Private-PAC learnability). An algorithm A is an (α, β, ε, δ,m)-PPAC
learner for a class C if: (i) A is (ε, δ)-differentially private; and, (ii) A is an (α, β,m)-PAC
learning algorithm for C.

In this thesis, we will also investigate the other notion of learnability in the light of privacy
aspects. Namely, we define the natural definition combining privacy and consistency as
follows:

Definition 3.2.8. An algorithm A is said to be (ε, δ)-Privately universally consistent,
or PUC for short, if it is (ε, δ)-differentially private and universally consistent.



CHAPTER 3. BACKGROUND AND PRELIMINARIES 38

Remark 3.2.9. Note that the utility requirement and the privacy requirement in the
above definition are fundamentally different: Utility is only required to hold in the limiting
regime when the sample size goes to infinity. In contrast, the privacy requirement is a
worst-case kind of requirement that must hold for any two neighboring inputs, no matter
how they were generated, even if they were not sampled from any distribution.

3.3 Additional Notation

Given a number ℓ ∈ N and a dataset S containing points from an ordered domain, we use
min(S, ℓ) (or max(S, ℓ)) to indicate the subset of ℓ minimal (or maximal) values within S.
When S contains points from a d-dimentional domain, we write mini(S, ℓ) (or maxi(S, ℓ))
to denote the subset of ℓ minimal (or maximal) values within S w.r.t. the ith axis.



Chapter 4

Real Valued Compression

In the study of machine learning theory, the standard definitions of learning, as PAC-
learning for the binary case, require the learner to achieve arbitrary small accuracy. It
is often difficult to be able to supply such a strong requirement, but nevertheless it may
be much simpler, for a large set of problems, to construct learners which are somewhat
better than a random labeling. Those learners are called weak-learners as opposed to the
standard strong-learners. The idea of combining weak-learners in a way that produces a
strong-learner is called Boosting.

As mentioned above (2.1), boosting has been shown to be a powerful technique for con-
structing compression schemes. In this chapter, we will first explore theoretical concepts
regarding boosting and the notion of weak learning. We will then show how these ideas
can be applied to the construction of compression schemes, and present our main results
in this area.

4.1 Boosting Real-Valued Functions

The idea of leveraging or boosting weak-learners in order to achieve stronger learning
guarantees started as a question proposed by Kearns, and reached a positive result in the
seminal works by Schapire (1990) and Freund and Schapire (1997). The latter contained
the well-known Adaboost algorithm, which is widely used in practice.

4.1.1 The MedBoost Algorithm

In the context of boosting for real-valued functions, the notion of an (η, γ)-weak hypoth-
esis, defined above at Definition 1.1.3, plays a role analogous to the usual notion of a
weak hypothesis in boosting for classification. Using this notion, the following boosting
algorithm was proposed by Kégl (2003) as an extension to the classic Adaboost algorithm.

Intuitively, the MedBoost algorithm uses the weak learner in order iteratively produce

39
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Algorithm 2 MedBoost({(xi, yi)}i∈[m],T ,γ,η)
1: Define P0 as the uniform distribution over {1, . . . , n}
2: for t = 0, . . . , T do
3: Call weak learner to get ht and (η/2, γ)-weak hypothesis
4: w.r.t. (xi, yi) : i∼Pt (repeat until it succeeds)
5: for i = 1, . . . ,m do
6: θ

(t)
i ← 1− 2I[|ht(xi)− yi| > η/2]

7: αt ← 1
2
ln

(
(1−γ)

∑m
i=1 Pt(i)I[θ(t)i =1]

(1+γ)
∑m

i=1 Pt(i)I[θ(t)i =−1]

)
8: if αt =∞ then
9: Return T copies of ht, and (1, . . . , 1)

10: for i = 1, . . . ,m do
11: Pt+1(i)← Pt(i)

exp{−αtθ
(t)
i }∑m

j=1 Pt(j) exp{−αtθ
(t)
j }

12: Return (h1, . . . , hT ) and (α1, . . . , αT )

weak hypotheses. It maintains a distribution on the initial sample which adaptively gives
more weight to hard data points, enabling it to focus on those problematic points. Finally
it assigns weight to each learner according to its performance. We can then use the series
of learners and weights in order to construct a single strong hypothesis by taking the
weighted median or the weighted quantile.

As it will be convenient for our later results, we expressed the algorithm output as a
sequence of functions and weights; the boosting guarantee from Kégl (2003) applies to
the weighted quantiles (and in particular, the weighted median) of these function values.

Here we define the weighted median as

Median(y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2

}
.

Also define the weighted quantiles, for γ ∈ [0, 1/2], as

Q+
γ (y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2
− γ

}

Q−γ (y1, . . . , yT ;α1, . . . , αT ) = max

{
yj :

∑T
t=1 αtI[yj > yt]∑T

t=1 αt
<

1

2
− γ

}
,

and abbreviate Q+
γ (x) = Q+

γ (h1(x), . . . , hT (x);α1, . . . , αT ) and Q−γ (x) =

Q−γ (h1(x), . . . , hT (x);α1, . . . , αT ) for h1, . . . , hT and α1, . . . , αT the values returned
by MedBoost.

After proposing the algorithm, Kégl (2003) proves the following:

Lemma 4.1.1. (Kégl (2003)) For a training set Z = {(x1, y1), . . . , (xm, ym)} of size m,
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the return values of MedBoost satisfy

1

m

m∑
i=1

I
[
max

{∣∣∣Q+
γ/2(xi)− yi

∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} > η/2
]
≤

T∏
t=1

eγαt

m∑
i=1

Pt(i)e
−αtθ

(t)
i .

We note that, in the special case of binary classification, MedBoost is closely related to
the well-known AdaBoost algorithm (Freund and Schapire, 1997), and the above results
correspond to a standard margin-based analysis of Schapire et al. (1998).

For our purposes, we will need the following corollary, which we prove below.

Corollary 4.1.2. For T = Θ
(

1
γ2

ln(m)
)
, every i ∈ {1, . . . ,m} has

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} ≤ η/2.

In the proof, we use the following technical lemma

Lemma 4.1.3. For x ≥ 1
2
+ γ it holds that

x1+γ(1− x)1−γ ≤
(
1

2
+ γ

)1−γ (
1

2
− γ
)1+γ

.

Proof. Denote the left side as a function f and take log of f

log(f(x)) = (1 + γ) log(x) + (1− γ) log(1− x).

Observe that the derivative with respect to x which is (log(f(x)))′ = (1 + γ)/x − (1 −
γ)/(1 − x) is negative for x ≥ (1 + γ)/2. Since x ≥ 1

2
+ γ > (1 + γ)/2 this condition

holds. So the function log(f(a)) := log (a1+γ(1− a)1−γ) is monotonically decreasing and
by that also f itself is monotonically decreasing. Hence

x1+γ(1− x)1−γ ≤ (
1

2
+ γ)1+γ(1− 1

2
+ γ)1−γ.

Proof of Corollary 4.1.2. By the definition of αt we know that

eαt =

(
(1− γ)

∑
θi(t)=1 Pt(i)

(1 + γ)
∑

θi(t)=−1 Pt(i)

)1/2

.
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Split the sum within the RHS into {i | θi(t) = 1} and {i | θi(t) = −1} to get that

T∏
t=1

eγαt

m∑
i=1

Pt(i)e
−αtθi(t)a

=
T∏
t=1

eγαt

[ ∑
θi(t)=1

Pt(i)e
−αt +

∑
θi(t)=−1

Pt(i)e
αt

]

=
T∏
t=1

eγαt

[
e−αt

∑
θi(t)=1

Pt(i) + eαt
∑

θi(t)=−1

Pt(i)

]

=
T∏
t=1

[
e−αt(1−γ)

∑
θi(t)=1

Pt(i) + eαt(1+γ)
∑

θi(t)=−1

Pt(i)

]
.

Plug-in eαt

=
T∏
t=1

[(
(1 + γ)

∑
θi(t)=−1 Pt(i)

(1− γ)
∑

θi(t)=1 Pt(i)

) 1−γ
2 ∑

θi(t)=1

Pt(i)

+

(
(1− γ)

∑
θi(t)=1 Pt(i)

(1 + γ)
∑

θi(t)=−1 Pt(i)

) 1+γ
2 ∑

θi(t)=−1

Pt(i)

]

=
T∏
t=1

[ ∑
θi(t)=1

Pt(i)


1+γ
2
 ∑
θi(t)=−1

Pt(i)


1−γ
2 (

1 + γ

1− γ

) 1−γ
2

+

 ∑
θi(t)=1

Pt(i)


1+γ
2
 ∑
θi(t)=−1

Pt(i)


1−γ
2 (

1− γ
1 + γ

) 1+γ
2

]
.

By the (ε, γ)-weak-learning guarantee we know that

∑
θi(t)=1

Pt(i) ≥
1

2
+ γ

and ∑
θi(t)=−1

Pt(i) <
1

2
− γ

and by Lemma 4.1.3

≤
T∏
t=1

[(
1 + γ

1− γ

) 1−γ
2

+

(
1− γ
1 + γ

) 1+γ
2

](
1

2
+ γ

) 1−γ
2
(
1

2
− γ
) 1+γ

2

=
T∏
t=1

1

2

(
1− γ
1 + γ

) γ
2
(
1 + 2γ

1− 2γ

) γ
2

(1− 4γ2)1/2

((
1 + γ

1− γ

)1/2

+

(
1− γ
1 + γ

)1/2
)
,
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noting that for every γ ∈ (0, 1/3).

1

2

(
1− γ
1 + γ

) γ
2
(
1 + 2γ

1− 2γ

) γ
2

(1− 4γ2)1/2

((
1 + γ

1− γ

)1/2

+

(
1− γ
1 + γ

)1/2
)
< e−γ

2/4,

we get that

1

m

m∑
i=1

I
[
max

{∣∣∣Q+
γ/2(xi)− yi

∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} > η/2
]

≤
T∏
t=1

eγαt

m∑
i=1

Pt(i)e
−αtθ

(t)
i < e−Tγ

2/4.

Finally for T = 4
γ2

ln(m) the last bound is equal to 1
m

and hence the corollary holds.

4.1.2 The Sample Complexity of Weak Learning

This section reveals our intent in choosing this notion of weak hypothesis, rather than
using, for example, an ε-good strong learner under absolute loss. In addition to being a
strong enough notion for boosting to work, we show here that it is also a weak enough
notion for the sample complexity of weak learning to be of reasonable size: namely, a
size quantified by the fat-shattering dimension. This result is also relevant to an open
question posed by Simon (1997), which we discuss on Subsection 4.1.2.

The Notion of "Weak Learning"

As mentioned above, the notion of a weak learner for learning real-valued functions must
be formulated carefully. The naïve thought that we could take any learner guaranteeing,
for example, absolute loss at most 1

2
− γ, is known to be not strong enough to enable

boosting to ε loss. However, if we make the requirement too strong, such as in Freund
and Schapire (1997) for AdaBoost.R, then the sample complexity of weak learning will
be so high that weak learners cannot be expected to exist for large classes of functions.

Starting with Kearns and Schapire, the notion of weak learning was tied to the notion
of PAC learnability. Weak learning is, as one may expect, the weak version of PAC
learning. This relation meant that weak-learning also was defined using a loss-function
and a (weak) upper-bound on the loss of the resulting hypothesis, namely a fixed, yet
bounded away from 1/2, bound on the expected loss.

Normally when extending the PAC paradigm to the real-valued/continuous case, we just
replace the loss-function. Thus, we get the following

Definition 4.1.4 ("Standard"-Weak-Hypothesis). For γ ∈ [0, 1/2], we say that f : X →
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R is an an γ-weak hypothesis (with respect to distribution D and target f ∗ ∈ F) if

E
X∼D

[l(fS(x), f
∗(x))] ≤ 1

2
− γ.

Unfortunately, this extension for the problem of boosting essentially fails. Duffy and
Helmbold (2002, Remark 2.1) point out that, using this notion of weak learning, one can
not guarantee that using the method of modifying the distribution over the sample will
force the learner to establish a good hypothesis. This is due to the fact that, unlike the
binary-case, the error can be spread evenly over all the sample, meaning that the error
remains the same regardless of the distribution on the sample. This might result in the
learner outputting the same hypothesis on each iteration, and hence not improving the
error of the final output regressor. Some lines of work, including Freund and Schapire’s
AdaBoost.R, used more complex boosting ideas in order to bypass this problem. Those
algorithms are either problematic in their runtime, or, as in the AdaBoost.R case, based
on weak learners whose sample complexity depends on the Pseudo-dimension of the class
1, which tends to be so high that weak learners cannot be expected to exist for large
classes of functions.

For this reason, we use a different notion. Recall the definition

Definition 4.1.5 ((η, γ)-Weak-Hypothesis). For η ∈ [0, 1] and γ ∈ [0, 1/2], we say that
f : X → R is an an (η, γ)-weak hypothesis (with respect to distribution D and target
f ∗ ∈ F) if

Pr
X∼D

(|f(X)− f ∗(X)| > η) ≤ 1

2
− γ.

The (η, γ)-weak-learner, which has appeared, among other works, in Anthony et al.
(1996); Simon (1997); Avnimelech and Intrator (1999); Kégl (2003), gets around this
difficulty by demanding a bound on the measure of the points in which the hypothesis
has "big" local error. Furthermore, this notion was in fact proven useful in various, quite
simple, boosting mechanisms, but, to our knowledge, provable general constructions of
such learners have been lacking. Note that, as in other definitions of weak-learning, this
definition also uses a "strong" definition of learning, which was proposed by Simon.

Definition 4.1.6 ((ε, γ)-good-model). For ε, η ∈ [0, 1] and γ ∈ [0, 1/2], we say that
f : X → R is an an (ε, γ)-good model (with respect to distribution D and target f ∗ ∈ F)
if

Pr
X∼D

(|f(X)− f ∗(X)| > η) ≤ ε.

and a A is γ-learner if for every ε, δ and sample S of size m = m(ε, δ), with probability at
least 1− δ, f = A(S) is a (ε, γ)-good-model. So (η, γ)-weak-learner is simply a γ-learner

1A different combinatorial dimension for real-valued function classes, first defined by Pollard.
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with the error parameter ε fixed, and bounded away from 1/2.

Although there exist several uses of this type of "weak-learning", to our knowledge there
exist no provable constructions of such algorithms. We now present a provable and very
natural, namely ERM based, (η, γ)-learner. From this result, we are also able to construct
our (η, γ)-weak-learner, which was used by our compression-boosting mechanism.

Upper Bound on The Sample Complexity of (ε, γ)-Good-Learning

The following result is stated in the notion of the more general case of (ε, γ)-good-model.
in order to apply it to our boosting mechanism, we later fix the error parameter ε as
previously discussed, which then yields an Upper Bound on the sample complexity of
(ε, γ)-weak-learner.

Define ρη(f, g) = P2m(x : |f(x)− g(x)| > η), where P2m is the empirical measure induced
by X1, . . . , X2m iid P -distributed random variables (the m data points and m ghost
points). Define Nη(β) as the β-covering numbers of F under the ρη pseudo-metric.

Theorem 4.1.7. Fix any η, β ∈ (0, 1), α ∈ [0, 1), and m ∈ N. For X1, . . . , Xm iid
P -distributed, with probability at least 1− E

[
Nη(1−α)/2(β/8)

]
2e−mβ/96, every f ∈ F with

max1≤i≤m |f(Xi)− f ∗(Xi)| ≤ αη satisfies P (x : |f(x)− f ∗(x)| > η) ≤ β.

Proof. This proof roughly follows the usual symmetrization argument for uniform con-
vergence (Vapnik and Červonenkis, 1971; Haussler, 1992), with a few important modi-
fications to account for this (η, β)-based criterion. If E

[
Nη(1−α)/2(β/8)

]
is infinite, then

the result is trivial, so let us suppose it is finite for the remainder of the proof. Similarly,
if m < 8/β, then 2e−mβ/96 > 1 and hence the claim trivially holds, so let us suppose
m ≥ 8/β for the remainder of the proof. Without loss of generality, suppose f ∗(x) = 0

everywhere and every f ∈ F is non-negative (otherwise subtract f ∗ from every f ∈ F
and redefine F as the absolute values of the differences; note that this transformation
does not increase the value of Nη(1−α)/2(β/8) since applying this transformation to the
original Nη(1−α)/2(β/8) functions remains a cover).

Let X1, . . . , X2m be iid P -distributed. Denote by Pm the empirical measure induced by
X1, . . . , Xm, and by P ′m the empirical measure induced by Xm+1, . . . , X2m. We have

Pr(∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1)

≥ Pr
(
∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1

and P ′m(x : f(x) > η) > β/2
)
.

Denote by Am the event that there exists f ∈ F satisfying P (x : f(x) > η) > β and
Pm(x : f(x) ≤ αη) = 1, and on this event let f̃ denote such an f ∈ F (chosen solely
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based on X1, . . . , Xm); when Am fails to hold, take f̃ to be some arbitrary-fixed element
of F . Then the expression on the right-hand side above is at least as large as

Pr
(
Am and P ′m(x : f̃(x) > η) > β/2

)
,

and noting that the event Am is independent of Xm+1, . . . , X2m, this equals

E
[
IAm · Pr

(
P ′m(x : f̃(x) > η) > β/2

∣∣∣X1, . . . , Xm

)]
. (4.1)

Then note that for any f ∈ F with P (x : f(x) > η) > β, a Chernoff bound implies

Pr
(
P ′m(x : f(x) > η) > β/2

)
= 1− Pr

(
P ′m(x : f(x) > η) ≤ β/2

)
≥ 1− exp{−mβ/8} ≥ 1

2
,

where we have used the assumption that m ≥ 8
β

here. In particular, this implies that the
expression in (4.1) is no smaller than 1

2
Pr(Am). Altogether, we have established that

Pr(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2Pr(∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1) . (4.2)

Now let σ(1), . . . , σ(m) be independent random variables (also independent of the data),
with σ(i) ∼ Uniform({i,m + i}), and denote σ(m + i) as the sole element of {i,m +

i} \ {σ(i)} for each i ≤ m. Also denote by Pm,σ the empirical measure induced by
Xσ(1), . . . , Xσ(m), and by P ′m,σ the empirical measure induced by Xσ(m+1), . . . , Xσ(2m). By
exchangeability of (X1, . . . , X2m), the right-hand side of (4.2) is equal

Pr
(
∃f ∈ F : P ′m,σ(x : f(x) > η) > β/2 and Pm,σ(x : f(x) ≤ αη) = 1

)
.

Now let F̂ ⊆ F be a minimal subset of F such that max
f∈F

min
f̂∈F̂

ρη(1−α)/2(f̂ , f) ≤ β/8. The

size of F̂ is at most Nη(1−α)/2(β/8), which is finite almost surely (since we have assumed
above that its expectation is finite). Then note that (denoting by X[2m] = (X1, . . . , X2m))
the above expression is at most

Pr
(
∃f ∈ F̂ : P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

)
≤ E

[
Nη(1−α)/2(β/8)max

f∈F̂
Pr
(
P ′m,σ(x :f(x)>η(1 + α)/2) > (3/8)β

and Pm,σ(x :f(x)>η(1 + α)/2) ≤ β/8
∣∣X[2m]

)]
. (4.3)



CHAPTER 4. REAL VALUED COMPRESSION 47

Then note that for any f ∈ F , we have almost surely

Pr
(
P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ Pr

(
P2m(x : f(x) > η(1 + α)/2) > (3/16)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ exp{−mβ/96} ,

where the last inequality is by a Chernoff bound, which (as noted by Hoeffding (1963)) remains
valid even when sampling without replacement. Together with (4.2) and (4.3), we have that

Pr(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2E
[
Nη(1−α)/2(β/8)

]
e−mβ/96.

Lemma 4.1.8. There exist universal numerical constants c, c′ ∈ (0,∞) such that ∀η, β ∈
(0, 1),

Nη(β) ≤
(

2

ηβ

)cFatc′ηβ(F)
,

where Fat· (·) is the fat-shattering dimension.

Proof. Mendelson and Vershynin (2003, Theorem 1) establishes that the ηβ-covering
number of F under the L2(P2m) pseudo-metric is at most(

2

ηβ

)cFatc′ηβ(F)
(4.4)

for some universal numerical constants c, c′ ∈ (0,∞). Then note that for any f, g ∈ F ,
Markov’s and Jensen’s inequalities imply ρη(f, g) ≤ 1

η
∥f − g∥L1(P2m) ≤ 1

η
∥f − g∥L2(P2m).

Thus, any ηβ-cover of F under L2(P2m) is also a β-cover of F under ρη, and therefore
(4.4) is also a bound on Nη(β).

Combining the above two results yields the following theorem.

Theorem 4.1.9. For some universal numerical constants c1, c2, c3 ∈ (0,∞), for any
η, δ, β ∈ (0, 1) and α ∈ [0, 1), letting X1, . . . , Xm be iid P -distributed, where

m =

⌈
c1
β

(
Fatc2ηβ(1−α) (F) ln

(
c3

ηβ(1− α)

)
+ ln

(
1

δ

))⌉
,

with probability at least 1− δ, every f ∈ F with maxi∈[m] |f(Xi)− f ∗(Xi)| ≤ αη satisfies
P (x : |f(x)− f ∗(x)| > η) ≤ β.

Proof. The result follows immediately from combining Theorem 4.1.7 and Lemma 4.1.8.
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In particular, the specific case of weak-learners, as stated in Theorem 1.1.4, follows im-
mediately from this result by taking β = 1/2− γ and α = γ/2.

Tightness of The Upper Bound

To discuss tightness of Theorem 4.1.9, we note that in addition to the definition of a
(β, η)-good model Simon (1997) also proved the following lower bound

Theorem 4.1.10 (Simon (1997)). Let A be an algorithm which learns function class F
with an (β, η)-good model

1. If F is nontrivial 2 , β < 1/2 and η < ∆(F )/2. then A needs Ω(ln(1/δ)/β)

examples.

2. If β ≤ 1/8, 0 < δ ≤ 1/100. then A needs Ω((dNF (η)− 1)/β) examples.

When ∆(F ) = sup{∥g − f∥∞ | ∃x ∈ X : f(x) = g(x)}.

Combining the two, we get that a sample complexity lower bound for the same criterion
of

Ω

(
dNF (cη)

β
+

1

β
log

1

δ

)
,

where dNF (·) is a quantity somewhat smaller than the fat-shattering dimension, essentially
representing a fat Natarajan dimension.

Simon showed that this lower bound is tight and placed an open question

Open Problem: For every function class F there exists an algorithm A which learns
F with an (β, η)-good model, using

O
(
dNF (η)

β
+

1

β
ln(1/δ)

)
examples.

Thus, aside from the differences in the complexity measure (and a logarithmic factor),
we establish an upper bound of a similar form to Simon’s lower bound, hence making
significant progress towards solving Simon’s open question.

4.2 From Boosting to Compression

Generally, our strategy for converting the boosting algorithm MedBoost into a sample
compression scheme of smaller size follows a strategy of Moran and Yehudayoff for binary
classification, based on arguing that because the ensemble makes its predictions with
a margin (corresponding to the results on quantiles in Corollary 4.1.2), it is possible

2Meaning: there exist f, g ∈ F which are not pairwise disjoin, namely ∃x ∈ X : f(x) = g(x).
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to recover the same proximity guarantees for the predictions while using only a smaller
subset of the functions from the original ensemble. Specifically, we use the following
general sparsification strategy.

For α1, . . . , αT ∈ [0, 1] with
∑T

t=1 αt = 1, denote by Cat(α1, . . . , αT ) the categorical
distribution: i.e., the discrete probability distribution on {1, . . . , T} with probability
mass αt on t.

Algorithm 3 Sparsify({(xi, yi)}i∈[m], γ, T, n)
1: Run MedBoost({(xi, yi)}i∈[m], T, γ, η)
2: Let h1, . . . , hT and α1, . . . , αT be its return values
3: Denote α′t = αt/

∑T
t′=1 αt′ for each t ∈ [T ]

4: repeat
5: Sample (J1, . . . , Jn) ∼ Cat(α′1, . . . , α

′
T )

n

6: Let F = {hJ1 , . . . , hJn}
7: until max1≤i≤m |{f ∈ F : |f(xi)− yi| > η}| < n/2
8: Return F

The Sparsify procedure samples a subset of the hypotheses produced by the MedBoost
algorithm with probability which is proportional to the outputted weight corresponding
to each hypothesis. The procedure keeps sampling until it finds a subset s.t. most of
the hypotheses in the subset have low empirical error (with respect to the points in the
sample).

For any values a1, . . . , an, denote the (unweighted) median

Med(a1, . . . , an) =Median(a1, . . . , an; 1, . . . , 1).

Our intention in discussing the above algorithm is to argue that, for a sufficiently large
choice of n, the above procedure returns a set {f1, . . . , fn} such that

∀i ∈ [m], |Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

We analyze this strategy separately for binary classification and real-valued functions,
since the argument in the binary case is much simpler (and demonstrates more directly
the connection to the original argument of Moran and Yehudayoff), and also because we
arrive at a tighter result for binary functions than for real-valued functions.

4.2.1 Binary Classification

We begin with the simple observation about binary classification (i.e., where the functions
in F all map into {0, 1}). The technique here is quite simple, and follows a similar line
of reasoning to the original argument of Moran and Yehudayoff. The argument for real-
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valued functions below will diverge from this argument in several important ways, but
the high level ideas remain the same.

The compression function is essentially the one introduced by Moran and Yehudayoff,
except applied to the classifiers produced by the above Sparsify procedure, rather than
a set of functions selected by a minimax distribution over all classifiers produced by
O(dF) samples each. The weak hypotheses in MedBoost for binary classification can be
obtained using samples of size O(dF). Thus, if the Sparsify procedure is successful in
finding n such classifiers whose median predictions are within η of the target yi values
for all i, then we may encode these n classifiers as a compression set, consisting of the
set of k = O(ndF) samples used to train these classifiers, together with k log k extra bits
to encode the order of the samples.3 To obtain Theorem 1.1.1, it then suffices to argue
that n = Θ(d∗F) is a sufficient value. The proof follows.

Proof of Theorem 1.1.1. Recall that d∗F bounds the VC dimension of the class of sets
{{ht : t ≤ T, ht(xi) = 1} : 1 ≤ i ≤ m}. Thus for the iid samples hJ1 , . . . , hJn obtained
in Sparsify, for n = 64(2309 + 16d∗F) >

2304+16d∗F+log(2)

1/8
, by the VC uniform convergence

inequality of Vapnik and Červonenkis (1971), with probability at least 1/2 we get that

max
1≤i≤m

∣∣∣∣∣
(
1

n

n∑
j=1

hJj(xi)

)
−

(
T∑
t=1

α′ht(xi)

)∣∣∣∣∣ < 1/8.

In particular, if we choose γ = 1/8, η = 1, and T = Θ(log(m)) appropriately, then
Corollary 4.1.2 implies that every yi = I

[∑T
t=1 α

′ht(xi) ≥ 1/2
]

and
∣∣∣12 −∑T

t=1 α
′ht(xi)

∣∣∣ ≥
1/8 so that the above event would imply every

yi = I

[
1

n

n∑
j=1

hJj(xi) ≥ 1/2

]
=Med(hJ1(xi), . . . , hJn(xi)).

Note that the Sparsify algorithm need only try this sampling log2(1/δ) times to find such
a set of n functions. Combined with the description above (from Moran and Yehudayoff,
2016) of how to encode this collection of hJi functions as a sample compression set plus
side information, this completes the construction of the sample compression scheme.

4.2.2 Real-Valued Functions

Next, we turn to the general case of real-valued functions (where the functions in F may
generally map into [0, 1]). We have the following result, which says that the Sparsify

procedure can reduce the ensemble of functions from one with T = O(log(m)/γ2) func-
tions in it, down to one with a number of functions independent of m.

3In fact, k log n bits would suffice if the weak learner is permutation-invariant in its data set.
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Theorem 4.2.1. Choosing

n = Θ

(
1

γ2
Fat∗cη (F) log2(Fat∗cη (F) /η)

)
suffices for the Sparsify procedure to return {f1, . . . , fn} with

max
1≤i≤m

|Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

Proof. Recall from Corollary 4.1.2 that MedBoost returns functions h1, . . . , hT ∈ F and
α1, . . . , αT ≥ 0 such that ∀i ∈ {1, . . . ,m},

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} ≤ η/2,

where {(xi, yi)}mi=1 is the training data set. We use this property to sparsify h1, . . . , hT

from T = O(log(m)/γ2) down to k elements, where k will depend on η, γ, and the dual
fat-shattering dimension of F (actually, just of H = {h1, . . . , hT} ⊆ F) but not sample
size m.

Letting α′j = αj/
∑T

t=1 αt for each j ≤ T , we will sample k hypotheses
{
h̃1, . . . , h̃k

}
=:

H̃ ⊆ H with each h̃i = hJi , where (J1, . . . , Jk) ∼ Cat(α′1, . . . , α
′
T )

k as in Sparsify. Define
a function ĥ(x) =Med(h̃1(x), . . . , h̃k(x)). We claim that for any fixed i ∈ [m], with high
probability

|ĥ(xi)− f ∗(xi)| ≤ η/2. (4.5)

Indeed, partition the indices [T ] into the disjoint sets

L(x) =
{
j ∈ [T ] : hj(x) < Q−γ (h1(x), . . . , hT (x);α1, . . . , αT )

}
,

M(x) =
{
j ∈ [T ] : Q−γ (h1(x), ..., hT (x);α1, ..., αT ) ≤hj(x)≤ Q+

γ (h1(x), ..., hT (x);α1, ..., αT )
}
,

R(x) =
{
j ∈ [T ] : hj(x) > Q+

γ (h1(x), . . . , hT (x);α1, . . . , αT )
}
.

Then the only way (4.5) can fail is if half or more indices J1, . . . , Jk sampled fall into R(xi) —
or if half or more fall into L(xi). Since the sampling distribution puts mass less than 1/2 − γ
on each of R(xi) and L(xi), Chernoff’s bound puts an upper estimate of exp(−2kγ2) on either
event. Hence,

P
(
|ĥ(xi)− f∗(xi)| > η/2

)
≤ 2 exp(−2kγ2). (4.6)

Next, our goal is to ensure that with high probability, (4.5) holds simultaneously for all
i ∈ [m]. Define the map ξ : [m] → Rk by ξ(i) = (h̃1(xi), . . . , h̃k(xi)). Let G ⊆ [m] be a
minimal subset of [m] such that

max
i∈[m]

min
j∈G
∥ξ(i)− ξ(j)∥∞ ≤ η/2.
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This is just a minimal ℓ∞ covering of [m]. Then

Pr (∃i ∈ [m] : |Med(ξ(i))− f ∗(xi)| > η) ≤∑
j∈G

Pr (∃i : |Med(ξ(i))− f ∗(xi)| > η, ∥ξ(i)− ξ(j)∥∞ ≤ η/2) ≤∑
j∈G

Pr (|Med(ξ(j))− f ∗(xj)| > η/2) ≤ 2N∞([m], η/2) exp(−2kγ2),

where N∞([m], η/2) is the η/2-covering number (under ℓ∞) of [m], and we used the fact
that

|Med(ξ(i))−Med(ξ(j))| ≤ ∥ξ(i)− ξ(j)∥∞ .

Finally, to bound N∞([m], η/2), note that ξ embeds [m] into the dual class F∗. Thus, we
may apply the bound in (Rudelson and Vershynin, 2006, Display (1.4)):

logN∞([m], η/2) ≤ CFat∗cη (F) log2(k/η),

where C, c are universal constants and Fat∗· (F) is the dual fat-shattering dimension of
F . It now only remains to choose a k that makes exp

(
CFat∗cη (F) log2(k/η)− 2kγ2

)
as

small as desired.

To establish Theorem 1.1.2, we use the weak learner from above, with the booster
MedBoost from Kégl, and then apply the Sparsify procedure. Combining the corre-
sponding theorems, together with the same technique for converting to a compression
scheme discussed above for classification (i.e. encoding the functions with the set of
training examples from which they were obtained, plus a string of bits to denote from
which examples, and in what order, each weak hypothesis was obtained), this immedi-
ately yields the result claimed in Theorem 1.1.2, which represents our main new result
for sample compression of general families of real-valued functions.

4.2.3 Examples

As an example of the generality and usefulness of the above schemes, we present two
interesting and efficient compression schemes that can then be derived. The main tech-
nical result needed in order to apply our method to those cases was to find and prove
the dual Fat-Shattering dimension of the function-classes at hand, a problem which is
not trivial most of the time, requiring using tools from various domains. Leveraging
novel and relatively new algorithmic results from learning theory yields the final desired
compression-schemes.
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Sample compression for BV functions

The function class BV(v) consists of all f : [0, 1]→ R for which

V (f) := sup
n∈N

sup
0=x0<x1<...<xn=1

n−1∑
i=1

|f(xi+1)− f(xi)| ≤ v.

It is known (Anthony and Bartlett, 1999, Theorem 11.12) that Fatt (BV(v)) = 1 +

⌊v/(2t)⌋ . In Theorem 4.2.3 below, we show that the dual class has Fat∗t (BV(v)) =

Θ (log(v/t)) . Long (2004) presented an efficient, proper, consistent learner for the class
F = BV(1) with range restricted to [0, 1], with sample complexity mF(ε, δ) = O(1

ε
log 1

δ
).

Combined with Theorem 1.1.2, this yields

Corollary 4.2.2. Let F = BV(1)∩ [0, 1][0,1] be the class f : [0, 1]→ [0, 1] with V (f) ≤ 1.
Then the proper, consistent learner L of Long (2004), with target generalization error ε,
admits a sample compression scheme of size O(k log k), where

k = O
(
1

ε
log2

1

ε
· log

(
1

ε
log

1

ε

))
.

The compression set is computable in expected runtime

O
(
n

1

ε3.38
log3.38

1

ε

(
log n+ log

1

ε
log

(
1

ε
log

1

ε

)))
.

The remainder of this section is devoted to proving

Theorem 4.2.3. For F = BV(v) and t < v, we have Fat∗t (F) = Θ (log(v/t)).

First, we define some preliminary notions:

Definition 4.2.4. For a binary m× n matrix M , define

V (M, i) :=
m∑
j=1

I[Mj,i ̸=Mj+1,i],

G(M) :=
n∑
i=1

V (M, i),

V (M) := max
i∈[n]

V (M, i).

Lemma 4.2.5. Let M be a binary 2n × n matrix. If for each b ∈ {0, 1}n there is a row
j in M equal to b, then

V (M) ≥ 2n

n
.

In particular, for at least one row i, we have V (M, i) ≥ 2n/n.
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Proof. Let M be a 2n × n binary such that for each b ∈ {0, 1}n there is a row j in M

equal to b. Given M ’s dimensions, every b ∈ {0, 1}n appears exactly in one row of M , and
hence the minimal Hamming distance between two rows is 1. Summing over the 2n − 1

adjacent row pairs, we have

G(M) =
n∑
i=1

V (M, i) =
n∑
i=1

m∑
j=1

I[Mj,i ̸=Mj+1,i] ≥ 2n − 1,

which averages to
1

n

n∑
i=1

V (M, i) =
G(M)

n
≥ 2n − 1

n
.

By the pigeon-hole principle, there must be a row j ∈ [n] for which V (M, i) ≥ 2n−1
n

,
which implies V (M) ≥ 2n−1

n
.

We split the proof of Theorem 4.2.3 into two estimates:

Lemma 4.2.6. For F = BV(v) and t < v, Fat∗t (F) ≤ 2 log2(v/t).

Lemma 4.2.7. For F = BV(v) and 4t < v, Fat∗t (F) ≥ ⌊log2(v/t)⌋.

Proof of Lemma 4.2.6. Let {f1, . . . , fn} ⊂ F be a set of functions that are t-shattered by
F∗. In other words, there is an r ∈ Rn such that for each b ∈ {0, 1}n there is an xb ∈ F∗

such that

∀i ∈ [n], xb(fi)

≥ ri + t, bi = 1

≤ ri − t, bi = 0
.

Let us order the xbs by magnitude x1 < x2 < . . . < x2n , denoting this sequence by (xi)
2n

i=1.
Let M ∈ {0, 1}2n×n be a matrix whose ith row is bj, the latter ordered arbitrarily.

By Lemma 4.2.5, there is i ∈ [n] s.t.

2n∑
j=1

I[M(j, i) ̸=M(j + 1, i)] ≥ 2n

n
.

Note that if M(j, i) ̸=M(j + 1, i) shattering implies that

xj(fi) ≥ ri + t and xj+1(fi) ≤ ri − t

or
xj(fi) ≤ ri − t and xj+1(fi) ≥ ri + t;

either way,
|fi(xj)− fi(xj+1)| = |xj(fi)− xj+1(fi)| ≥ 2t.
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So for the function fi, we have

2n∑
j=1

|fi(xj)− fi(xj+1)| =
2n∑
j=1

|xj(fi)− xj+1(fi)| ≥
2n∑
j=1

I[bji ̸= bj+1i · 2t ≥
2n

n
· 2t.

As {xj}2
n

j=1 is a partition of [0, 1] we get

v ≥
2n∑
j=1

|fi(xj)− fi(xj+1)| ≥
t2n+1

n
≥ t2n/2

and hence
v/t ≥ 2n/2

⇒ 2 log2(v/t) ≥ n.

Proof of Lemma 4.2.7. We construct a set of n = ⌊log2(v/t)⌋ functions that are t-shattered
by F∗. First, we build a balanced Gray code (Flahive and Bose, 2007) with n bits, which
we arrange into the rows of M . Divide the unit interval into 2n segments and define, for
each j ∈ [2n],

xj :=
j

2n
.

Define the functions f1, . . . , , f⌊log2(v/t)⌋ as follows:

fi(xj) =

t, M(j, i) = 1

−t, M(j, i) = 0
.

We claim that each fi ∈ F . Since M is balanced Gray code,

V (M) =
2n

n
≤ v

t log2(v/t)
≤ v

2t
.

Hence, for each fi, we have

V (fi) ≤ 2tV (M, i) ≤ 2t
v

2t
= v.

Next, we show that this set is shattered by F∗. Fix the trivial offest r1 = ... = rn = 0

For every b ∈ {0, 1}n there is a j ∈ [2n] s.t. b = bi. By construction, for every i ∈ [n], we
have

xj(fi) = fi(xj) =

t ≥ ri + t, M(j, i) = 1

−t ≤ ri − t, M(j, i) = 0
.



CHAPTER 4. REAL VALUED COMPRESSION 56

Sample compression for nearest-neighbor regression

Let (X , ρ) be a metric space and define, for L ≥ 0, the collection FL of all f : X → [0, 1]

satisfying
|f(x)− f(x′)| ≤ Lρ(x, x′);

these are the L-Lipschitz functions. Gottlieb et al. (2017b) showed that

Fatt (FL) = O
(
⌈Ldiam (X ) /t⌉ddim(X )

)
,

where diam (X ) is the diameter and ddim is the doubling dimension (see Definition 6.3.1.
The proof is achieved via a packing argument, which also shows that the estimate is tight.
Below we show that Fat∗t (F) = Θ(log (M(X , 2t/L))), where M(X , ·) is the packing
number of (X , ρ). Applying this to the efficient nearest-neighbor regressor4 of Gottlieb
et al. (2017a), we obtain

Corollary 4.2.8. Let (X , ρ) be a metric space with hypothesis class FL, and let L be
a consistent, proper learner for FL with target generalization error ε. Then L admits a
compression scheme of size O(k log k), where

k = O
(
D(ε) log

1

ε
· logD(ε) log

(
1

ε
logD(ε)

))
and

D(ε) =

⌈
Ldiam (X )

ε

⌉ddim(X )

.

We now prove our estimate on the dual fat-shattering dimension of F :

Lemma 4.2.9. For F = FL, Fat∗t (F) ≤ log2 (M(X , 2t/L)).

Proof. Let {f1, . . . , fn} ⊂ FL a set that is t-shattered by F∗L. For b ̸= b′ ∈ {0, 1}n, let i
be the first index for which bi ̸= b′i, say, bi = 1 ̸= 0 = b′. By shattering, there are points
xb, xb′ ∈ F∗L such that xb(fi) ≥ ri + t and xb′(fi) ≤ ri − t, whence

fi(xb)− fi(xb′) ≥ 2t

and
Lρ(xb, xb′) ≥ fi(xb)− fi(xb′) ≥ 2t.

It follows that for b ̸= b′ ∈ {0, 1}n, we have ρ(xb, xb′) ≥ 2t/L. Denoting by M(X , ε) the
4In fact, the technical machinery in Gottlieb et al. (2017a) was aimed at achieving approximate

Lipschitz-extension, so as to gain a considerable runtime speedup. An exact Lipschitz extension is much
simpler to achieve. It is more computationally costly but still polynomial-time in sample size.
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ε-packing number of X , we get

2n = |{xb | b ∈ {0, 1}n}| ≤ M(X , 2t/L).

Lemma 4.2.10. For F = FL and t < L, Fat∗t (F) ≥ log2 (M(X , 2t/L)).

Proof. Let S = {x1, ..., xm} ⊆ X be a maximal 2t/L-packing of X . Suppose that c : S →
{0, 1}⌊log2m⌋ is one-to-one. Define the set of function F = {f1, . . . , f⌊log2(m)⌋} ⊆ FL by

fi(xj) =

t, c(xj)i = 1

−t, c(xj)i = 0
.

For every f ∈ F and every two points x, x′ ∈ S it holds that

|f(x)− f(x′)| ≤ 2t = L · 2t/L ≤ Lρ(x, x′).

This set of functions is t-shattered by S and is of size ⌊log2m⌋ = ⌊log2 (M(X , 2t/L))⌋.



Chapter 5

Privately Leading Axis Aligned
Rectangles

We now investigate the problem of privately learning the class of axis-aligned rectangles,
defined as follows.

Definition 5.0.1 (Axis Aligned Rectangles). Let X = {0, . . . , X}d be a finite discrete
d-dimensional domain. Every p = (p1, . . . , pd) ∈ X , induces a classifier hp : X → {0, 1}
s.t for a given input x ∈ X we have

hp(x) =

1, ∀i ∈ [d] : xi ≤ pi

0, otherwise

Define the class of all axis-aligned and origin-placed rectangles as RECX
d = {hp : p ∈ X}.

We focus on the realizable setting in which for a class C of potential classifiers, there exist
some h∗ ∈ RECX

d , s.t errµ(h
∗) = 0.

Without the privacy requirement, learning axis-aligned rectangles is a simple task. As it
is described in classical books such as Kearns and Vazirani (1997) and Shalev-Shwartz and
Ben-David (2014) we can consider the simple algorithm which removes all the negative
labeled points and picks the tightest rectangle containing the remaining points. It can
also be seen from a compression scheme perspective, by applying the following simple
algorithm:

1. For every axis i ∈ [d]

(a) Remove all the negative-labeled points.

(b) Project all the remaining points onto the ith axis.

(c) Pick a point ai from the lowest valued projected point.

(d) Pick a point bi from the highest valued projected point.

58
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2. Return the axis-aligned rectangle defined by the intervals [ai, bi] at the different axes.

This is a valid compression scheme which yields a simple and efficient PAC-learner for
the class.

As for privately learning, this idea is no longer valid due to its high sensitivity. Moreover,
as mentioned in 1.2.1, it is not a matter of any specific algorithm or technique, but under
privacy constraints this learning task is inherently harder, and the sample complexity
must depend on the domain size at least by a log∗ factor.

5.1 Baseline

The best prior result for the problem, which we use as our baseline, obtains sample
complexity Õ

(
d1.5 · (log∗ |X |)1.5

)
. This baseline algorithm is based on a reduction to

(privately) solving the following problem, called the interior point problem.

Definition 5.1.1 (Bun et al. 2015). An algorithm A is said to solve the Interior Point
Problem for domain X with failure probability β and sample complexity n, if for every
m ≥ n and every database S containing m elements from X it holds that: Pr[min(S) ≤
A(S) ≤ max(S)] ≥ 1− β.

That is, given a database S containing (unlabeled) elements from a (one dimensional) grid
X , the interior point problem asks for an element of X between the smallest and largest
elements in S. The baseline we consider for privately learning axis-aligned rectangles
is as follows: Suppose we have a differentially private algorithm B for the interior point
problem over domain X with sample complexity n (let us ignore the failure probability for
simplicity). We now use B to construct the following algorithm A that takes a database S
containing labeled elements from X d. For simplicity, we assume that S contains “enough”
positive elements, as otherwise we could simply return the all-zero hypothesis.

1. For every axis i ∈ [d]:

(a) Project the positive points in S onto the ith axis.

(b) Let Ai and Bi denote the smallest n and the largest n (projected) points, without
their labels.

(c) Let ai ← B(Ai) and bi ← B(Bi).

2. Return the axis-aligned rectangle defined by the intervals [ai, bi] at the different axes.

Now, recall that each application of algorithm B returns an interior point of its input
points. Hence, for every axis i, it holds that the interval [ai, bi] contains (the projection)
of all, but at most 2n, of the positive examples in the ith axis. Therefore, the rectangle
returned in Step 2 contains all, but at most 2nd, of the positive points (and it does not
contain any of the negative points, because this rectangle is contained inside the target
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rectangle). So algorithm A errs on at most 2nd of its input points.

Assuming that |S| ≫ 2nd, we therefore get that algorithm A has small empirical error.
As the VC dimension of the class of axis-aligned rectangles is O(d), this means that
algorithm A is a PAC learner for this class with sample complexity O(nd). The issue
here is that algorithm A executes algorithm B many times (specifically, 2d times). Hence,
in order to argue that A is (ε, δ)-differentially private, standard composition theorems
for differential privacy require each execution of algorithm B to be done with a privacy
parameter of ≈ ε/

√
2d. This, in turn, would mean that n (the sample complexity of

algorithm B) needs to be at least
√
2d, which means that algorithm A errs on 2nd ≈ d1.5

input points, which translates to sample complexity of |S| ≫ d1.5.

The takeaway from this baseline learner is that in order to reduce the sample complexity
to be linear in d, we want to bypass the costs incurred from composition. That is, we
still want to follow the same strategy (apply algorithm B twice on every axis), but we
want to do it without appealing to composition arguments in the privacy analysis. This
was the starting point of our thought process.

5.2 The Algorithm

We now briefly survey two intuitive attempts that fail to achieve this, but are useful for
the presentation of our final algorithm.

Failed Attempt #1. As before, let B denote an algorithm for the interior point prob-
lem over domain X with sample complexity n. Consider the following modification to
algorithm A (marked in red). As before, algorithm A takes a database S containing
labeled elements from X d, where we assume for simplicity that S contains "enough"
positive elements.

1. For every axis i ∈ [d]:

(a) Project the positive points in S onto the ith axis.

(b) Let Ai and Bi denote the smallest n and the largest n (projected) points, without
their labels.

(c) Let ai ← B(Ai) and bi ← B(Bi).

(d) Delete from S all points (with their labels) that correspond to Ai and Bi.

2. Return the axis-aligned rectangle defined by the intervals [ai, bi] at the different axes.

The (incorrect) idea here is that by adding Step 1d we make sure that each datapoint
from S is "used only once", and hence we do not need to pay in composition. In other
words, the hope is that if every execution of algorithm B is done with a privacy parameter
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ε, then the whole construction would satisfy differential privacy with parameter O(ε).

The failure point of this idea is that by deleting one point from the data, we can create a
"domino effect" that affects (one by one) many of the sets Ai, Bi throughout the execution.
Specifically, consider two neighboring datasets S and S ′ = S ∪ {(x′, y′)} for some labeled
point (x′, y′) ∈ Xd×{0, 1}. Suppose that during the execution on S ′ it holds that x′ ∈ A1.
So the additional point x′ participates "only" in the first iteration of the algorithm, and
gets deleted afterwards. However, since the size of the sets Ai, Bi is fixed, during the
execution on S (without the point x′) it holds that a different point z gets included in A1

instead of x′, and this point z is then deleted from S (but it is not deleted from S ′ during
the execution on S ′). Therefore, also during the second iteration we have that S and
S ′ are not identical (they still differ on one point) and this domino effect can continue
throughout the execution. That is, a single data point can affect many of the executions
of B, and we would still need to pay in composition to argue privacy.

Failed Attempt #2. In order to overcome the previous issue, one might try the fol-
lowing variant of algorithm A.

1. For every axis i ∈ [d]:

(a) Project the positive points in S onto the ith axis.

(b) Let sizeAi
= 2n+Noise and let sizeBi

= 2n+Noise.

(c) Let Ai and Bi denote the smallest sizeAi
and the largest sizeBi

(projected) points,
respectively, without their labels.

(d) Let ai ← B(Ai) and bi ← B(Bi).

(e) Delete from S all points (with their labels) that correspond to Ai and Bi.

2. Return the axis-aligned rectangle defined by the intersection of the intervals [ai, bi] at
the different axes.

The idea now is that the noises we add to the sizes of the Ai’s and the Bi’s would "mask"
the domino effect mentioned above. Specifically, the hope is as follows: Consider the
execution of (the modified) algorithm A on S and on S ′ = S ∪ {(x′, y′)}, and let i be
the first axis such that x′ ∈ Ai ∪ Bi during the execution on S ′. Suppose w.l.o.g. that
x′ ∈ Bi. Now, the hope is that if during the execution on S we have that the noisy
sizeBi

is smaller by 1 than its value during the execution on S ′, then this eliminates the
domino effect we mentioned, because we would not need to add another point instead of
x′. Specifically, during time i, the point x′ gets deleted from S ′, and every other point
is either deleted from both S, S ′ or not deleted from any of them. So after time i the
two executions continue identically. Thus, the hope is that by correctly "synchronizing"
the noises between the two executions (such that only the size of the "correct" set gets
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modified by 1) we can make sure that only one application of B is affected (in the last
example – only the execution of B(Bi) is affected), and so we would not need to apply
composition arguments.

Although very convincing, this idea fails. The (very subtle) issue here is that it is not
clear how to synchronize the noises between the two executions. To see the problem, let
us try to formalize the above argument.

Fix two neighboring databases S and S ′ = S ∪ {(x′, y′)}. Let us write Ai, Bi and A′i, B
′
i

to denote these sets during the executions on S and on S ′, respectively. Aiming to
synchronize the two executions, let us define a mapping π : R2d → R2d from noise vectors
during the execution on S ′ to noise vectors during the execution on S (determining the
values of sizeA1 , sizeB1 , . . . , sizeAd

, sizeBd
), such that throughout the execution we have

that Ai = A′i and Bi = B′i for all i except for a single pair, say Bj ̸= B′j, of neighboring
sets.

The straightforward way for defining such a mapping is as follows: Let j be the first
time step in which the additional point x′ gets included in a set A′j or B′j, and say that
it is included in B′j. Then the mapping would be to reduce (by 1) the value of sizeBj

(the noisy size of Bj during the execution on S). This would indeed make sure that,
conditioned on the noise vectors v′ and v = π(v′), the two executions differ only in a
single application of the interior point algorithm B, and hence the outcome distribution
of these two (conditioned) executions is very similar (in the sense of differential privacy).
That is, for any noise vector v and any event F ,

Pr[A(S ′) ∈ F |v] ≤ eε · Pr[A(S) ∈ F |π(v)] + δ.

Furthermore, (assuming an appropriate noise distribution) we can make sure that the
probability of obtaining the noise vectors v and π(v) is similar, with densities differing by
at most an eε factor (as is standard in the literature of differential privacy). Therefore,
had the mapping π we defined was a bijection, for any event F we would have that

Pr[A(S ′) ∈ F ] =
∑
v

Pr[v] · Pr[A(S ′) ∈ F |v]

≤
∑
v

eε · Pr[π(v)] · (eε · Pr[A(S) ∈ F |π(v)] + δ)

=
∑
π(v)

eε · Pr[π(v)] · (eε · Pr[A(S) ∈ F |π(v)] + δ)

= e2ε · Pr[A(S) ∈ F ] + eε · δ,

which would be great. Unfortunately, the mapping π we defined is not a bijection, and
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hence the second-to-last equality above is incorrect. To see that it is not a bijection,
suppose that d = 2 and consider a database S containing the following positively labeled
points: Many copies of the point (0, 0), as well as 10 copies of the point (1, 0) and 10
copies of the point (0, 1). The neighboring database S ′ contains, in addition to all these
points, also the point

(
1
2
, 1
2

)
. Now suppose that during the execution on S ′ we have that

|B′1| = 5 and |B′2| = 4. That is, the additional point is included in B′1. During the
execution on S we therefore reduce (by 1) the size of B1 and so |B1| = |B2| = 4. Now
suppose that during the execution on S ′ we have that |B′1| = 4 and |B′2| = 5. Here,
during the execution on S we reduce the size of B2 and so, again, |B1| = |B2| = 4. This
shows that the mapping π we defined is not a bijection. In general, in d dimensions, it
is only a d-to-1 mapping, which would would break our analysis completely (it will not
allow us to avoid the extra factor in d).

5.2.1 Our Solution - A Technical Overview

We now present a simplified version of our construction that overcomes the challenges
mentioned above. We stress that the actual construction is somewhat different. Consider
the following (simplified) algorithm.

1. For every axis i ∈ [d]:

(a) Project the positive points in S onto the ith axis.

(b) Let sizeAi
= 100n + Noise and let sizeBi

= 100n + Noise, where the standard
deviation of these noises is, say, 10n.

(c) Let Ai and Bi denote the smallest sizeAi
and the largest sizeBi

(projected) points,
respectively, without their labels.

(d) Let Ainner
i ⊆ Ai be the n largest points in Ai. Similarly, let Binner

i ⊆ Bi be the n
smallest points in Bi.

(e) Let ai ← B(Ainner
i ) and bi ← B(Binner

i ).

(f) Delete from S all points (with their labels) whose projection onto the ith is not
in the interval [ai, bi].

2. Return the axis-aligned rectangle defined by the intersection of the intervals [ai, bi] at
the different axes.

There are two important modifications here. First, we still add noise to the size of
the sets Ai, Bi, but we only use the n "inner" points from these sets. Second, we delete
elements from S not based on them being inside Ai or Bi, but only based on the (privately
computed) interval [ai, bi]. We now elaborate on these ideas, and present a (simplified)
overview for the privacy analysis. Any informalities made herein are removed in the
sections that follow.
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Let S and S ′ = S ∪ {(x′, y′)} be neighboring databases, differing on the labeled point
(x′, y′). Consider the execution on S and on S ′. The privacy analysis is based on the
following two lemmas.

Lemma 5.2.1 (informal). With probability at least 1 − δ, throughout the execution it
holds that x′ participates in at most O(log(1/δ)) sets Ai, Bi.

This lemma holds because of our choice for the noise magnitude. In more detail, given
that x′ ∈ Ai, there is a constant probability that x′ ∈ Ai \Ainner

i . Since the interior point
ai is computed from Ainner

i , in such a case we will have that x′ < ai, and hence, x′ is
deleted from the data during this iteration. This means that every time x′ is included
in Ai, there is a constant probability that x′ will be deleted from the data. Thus, one
can show (using concentration bounds) that the number of times i such that x′ ∈ Ai is
bounded (w.h.p.). A similar argument also holds for Bi.

Lemma 5.2.2 (informal). In iterations i in which x′ is not included in Ai or Bi, we have
that ai and bi are distributed exactly the same during the execution on S and on S ′.

Indeed, in such an iteration, the point x′ has no effect on the outcome distribution of
B (who computes ai, bi). Overall, w.h.p., there are at most O(log 1

δ
) axes the point x′

effects. We pay in composition only for those axes, while in all other axes we get privacy
"for free". This allows us to save a factor of

√
d in the sample complexity, and obtain an

algorithm with sample complexity linear in d.

Note that the definition of privacy we work with is that of (ε, δ)-differential privacy. In
contrast to the case of (ε, 0)-differential privacy, where it suffices to analyze the privacy
loss w.r.t. every single possible outcome, with (ε, δ)-differential privacy we must account
for arbitrary events. To tackle this, we had to perform a more explicit and meticulous
analysis than that outlined above. Our analysis draws its structure from the proof of the
advanced-composition theorem (Dwork et al., 2010b), but instead of composing every-
thing we aim to preform effective composition, meaning that we incur a privacy loss only
on a small fraction of the iterations. To achieve this, as we mentioned, we partition the
iterations into several types – iteration on which we "pay" in privacy and iterations on
which we do not. However, this partition must be done carefully, as the partition itself
is random and needs to be different for different possible outcomes.

We believe that ideas from our work can be used more broadly, and hope that they find
new applications in avoiding (or reducing) composition costs in other settings.

Remark 5.2.3. To simplify the presentation, in the technical sections of this paper we
assume that the target rectangle is placed at the origin. Our results easily extend to
arbitrary axis-aligned rectangles.
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5.2.2 Formal Construction

Let A be an (ε, δ)-differentially private algorithm for solving the interior point problem
over domain {0, . . . , X} with failure probability β and sample complexity IPA (ε, δ, β).
We propose Algorithm 4, which we call RandMargins, and prove the following theorem.

Algorithm 4 RandMargins
Input: Data S ⊆ Rd of size n, and parameters β < 1

4
and δ < 1/e2, ε

Tool used: An (ε, δ)-private algorithm A for solving the interior point problem with
failure probability β and sample complexity IPA (ε, δ, β).

Denote ∆ = IPA (ε, δ, β)
Denote µ = 4∆ log(1/β)
Initialize S̄ ← S
for i = 1 to d do

wi ∼ Lap(2∆)
Bi = maxi(S̄, ⌈µ+ wi⌉)
Di = mini(Bi,∆)
pi ← A (Di, ε, δ, β)
Ri = {y ∈ S̄ : y[i] ≥ pi}
S̄ ← S̄ \Ri

Return (p1, . . . , pd)

Theorem 5.2.4. Let ε < 1, δ < 1
e2
, α, β. Algorithm 4 is (α, β, ε̃, δ̃)-PPAC learner, for

the RECd class, given a labeled sample of size O
(
IPA (ε, δ, β) · dα log

(
1
α

)
log
(

1
β

))
,

for δ̃ = (d+ 2)δ, and ε̃ = O (ε log(1/δ)) .

Remark 5.2.5. Kaplan et al. (2020a) introduced an algorithm A for the interior point
problem with sample complexity IPA (ε, δ, β) = Õ

(
1
ε
log1.5

(
1
δ

)
(log∗ (|X |))1.5

)
. Hence,

using their algorithm within Algorithm 4 provides the result of Theorem 1.2.2.

We analyze the privacy guarantees of Algorithm 4 in Section 5.3, and show the following
lemma.

Lemma 5.2.6. For every ε and every δ < 1
e2

. Then, given a labeled sample of size
O
(
IPA (ε, δ, β) · dα log

(
1
α

)
log
(

1
β

))
, Algorithm 4 is (ε̃, δ̃)-differentially private, for δ̃ =

(d+ 2)δ, and ε̃ = O (ε log(1/δ)) .

We analyze the utility guarantees of Algorithm 4 in Section 5.4, and show the following
lemma.

Lemma 5.2.7. For any choice of α, β, ε, δ, given a labeled sample of size

O
(
IPA (ε, δ, β) · dα log

(
1
α

)
log
(

1
β

))
then, with probability at least 1− β Algorithm 4 is α-accurate.



CHAPTER 5. PRIVATELY LEADING AXIS ALIGNED RECTANGLES 66

5.3 Privacy Analysis

Proof of Lemma 5.2.6. Let S and S ′ = S ∪ {(x′, y′)} be neighboring databases, differing
on the labeled point (x′, y′). Consider the execution on S and on S ′.

We denote by indi(x) the position of the point x in the remaining data S̄, when the data
is sorted by the ith coordinate.

Denote by i∗ the first iteration on which x′[i] > pi, note that i∗ is a random variable. For
an input set S, denote by S̄i the remaining set at the beginning of the ith iteration and
its size by n̄.

Partition the iterations in the following way

• Iin = {i ≤ i∗ | x′ ∈ B′i}

• Iout = {i < i∗ | x′ /∈ B′i}

• Iafter = {i | i > i∗}

We first argue that |Iin| is small (with high probability). Intuitively, this follows from
the fact that conditioned on x′ ∈ B′i, with constant probability, we get that x′ ∈ B′i \Di.
Note that in such a case, projecting on the ith axis, x′ is bigger (or equal) than any point
in Di. Furthermore, as the interior point pi is computed from Di, w.h.p. we get that
x′[i] ≥ pi, and hence x′ is removed from the data. To summarize, conditioned on x′ ∈ B′i
there is a constant probability that x′ is removed from the data, and hence the number
of times such that x′ ∈ B′i must be small (w.h.p.). We make this argument formal in the
appendix, obtaining the following claim.

Claim 5.3.1.
Pr[|Iin| > 35 log(1/δ)] ≤ δ.

Next, we will denote by B the inner steps of the loop in the algorithm. Meaning, the
input is S̄i, which B uses, along with the random noise and the mechanism A, in order
to output pi. Note that B can be seen as a stand-alone (ε, δ)-differentially private algo-
rithm (essentially amounts to a single execution of algorithm A). For convenience, we
will assume that the B’s output includes the noise value wi, and that the final output of
RandMargins includes the noise vector w = (w1, . . . , wd). As will be proven below, algo-
rithm RandMargins remains differentially private even when releasing this noise vector
(in addition to the output (p1, . . . , pd)).

Lemma 5.3.2 (Vadhan (2017)). For every (ε, δ)-private algorithm M and every two
neighboring datasets S, S ′, there exists an event G = G(M,S, S ′) such that

i) Pr[M(S) ∈ G] > 1− δ
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ii) Pr[M(S ′) ∈ G] > 1− δ

iii) ∀x ∈ G :
∣∣∣ln( Pr(M(S)=x)

Pr(M(S′)=x)

)∣∣∣ ≤ ε.

Define the event G = {(p, w) | ∀j ∈ [d] : (pj, wj) ∈ G(B, S̄j, S̄ ′j)}, where G(B, S̄j, S̄ ′j) is
the event guaranteed to exist by applying Lemma 5.3.2 to B, S̄j, S̄ ′j.

Note that by Lemma 5.3.2 and the union bound Pr[G] ≥ 1− dδ.

We wish to prove that for any possible output set P , it holds that

Pr[RandMargins(S) ∈ P ] ≤ eε̃ · Pr[RandMargins(S ′) ∈ P ] + δ̃.

Define the set
R =

{
(p, w)

∣∣∣∣ln( Pr[RM(S) = (p, w)]

Pr[RM(S ′) = (p, w)]

)
> ε̃

}
,

where RM is an abbreviation for RandMargins.

Now note that for every event P ,

Pr[RM(S) ∈ P ]

≤ Pr[RM(S) ∈ R] + Pr[RM(S) ∈ P \R]

≤ Pr[RM(S) ∈ R] + eε̃ Pr[RM(S ′) ∈ P \R]

≤ Pr[RM(S) ∈ R|+ eε̃ Pr[RM(S ′) ∈ P ]

So it is down to show that Pr[RM(S) ∈ R] ≤ δ̃. That is, we need to prove that

Pr
p,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
> ε̃

]
≤ δ̃.

We calculate,
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Prp,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
> ε̃

]
= Pr

p,w←RM(S)

[(
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w∈G > ε̃

)
OR

(
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w ̸∈G > ε̃

)]

≤ Pr
p,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w∈G > ε̃

]
+ Pr

p,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w ̸∈G > ε̃

]
≤ Pr

p,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w∈G > ε̃

]
+ (1− Pr[G])

≤ Pr
p,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p,w∈G > ε̃

]
+ dδ.

It remains to prove that Prp,w←RM(S)

[
ln
(

Pr(RM(S)=p,w)
Pr(RM(S′)=p,w)

)
· 1p,w∈G > ε̃

]
≤ 2δ.

We calculate,

Prp,w←RM(S)

[
ln

(
Pr(RM(S) = p, w)

Pr(RM(S ′) = p, w)

)
· 1p∈G > ε̃

]
= Pr

p,w←RM(S)

[
ln

(
d∏
i=1

Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1p,w∈G > ε̃

]

= Pr
p,w←RM(S)

[
d∑
i=1

ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi |= p<i, w<i)

)
· 1p,w∈G > ε̃

]

≤ Pr
p,w←RM(S)

[
d∑
i=1

(
ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

)
> ε̃

]

= Pr
p,w←RM(S)

[ ∑
i∈Iin

(
ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

)
+
∑
i∈Iout

(
ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

)

+
∑

i∈Iafter

(
ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

)
> ε̃

]
.1 (5.1)

1Note that the outer probability is over p and w. This allows the partition of the iterations into
Iin, Iout, Iafter to be well-defined, as this partition depends on p, w.
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We will prove the following

(i) Pr
[∑

i∈Iafter ln
(

Pr(RM(S)i=pi,wi|p<i,w<i)
Pr(RM(S′)i=pi,wi|p<i,w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= 0
]
= 1

(ii) Pr
[∑

i∈Iout ln
(

Pr(RM(S)i=pi,wi|p<i,w<i)
Pr(RM(S′)i=pi,wi|p<i,w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= 0
]
= 1

(iii) Pr
[∑

i∈Iin ln
(

Pr(RM(S)i=pi,wi|p<i,w<i)
Pr(RM(S′)i=pi,wi|p<i,w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

≤ ε̃
]
≥ 1− δ

Combining the above three claims implies a bound on (5.1) and finishes the proof.

Proof of (i). After i∗, by the algorithm definition, x′ gets removed from S ′. Hence, for
every i > i∗, conditioning on RM(S)<i = p<i, it holds that B′i = Bi. This implies that,
for every i ∈ Iafter,

Pr(RM(S)i = pi, wi | p<i, w<i) = Pr(RM(S ′)i = pi, wi | p<i, w<i)

which yields

Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

= 1

⇒ Pr

 ∑
i∈Iafter

ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= 0

 = 1

Proof of (ii). Recall that by the definition of Iout for every i ∈ Iout it holds that x′ /∈ B′i,
and hence, conditioning on the previous outputs, B′i = Bi. We therefore get that the
distribution of the ith output is also the same. Formally,

Pr(RM(S)i = pi, wi | p<i, w<i) = Pr(RM(S ′)i = pi, wi | p<i, w<i).

This results in

ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= 0

⇒ Pr

[ ∑
i∈Iout

ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= 0

]
= 1.

Proof of (iii). Note that, as we assume that the output of RM includes the random
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Laplasian noise, then by fixing the past output-point p<i, w<i we also fix S̄i, S̄ ′i. So,

ln

(
Pr(RM(S)i = pi, wi | p<i, w<i)
Pr(RM(S ′)i = pi, wi | p<i, w<i)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

= ln

(
Pr(B(S̄i) = pi, wi)

Pr(B(S̄ ′i) = pi, wi)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

.

Moreover, by the definition of the events Gi it holds that

Pr

[
|ln
(
Pr(B(S̄i) = pi, wi)

Pr(B(S̄ ′i) = pi, wi)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

| ≤ 2ε

]
= 1.

which yields

Pr

[∑
i∈Iin

ln

(
Pr(B(S̄i) = pi, wi)

Pr(B(S̄ ′i) = pi, wi)

)
· 1pi,wi∈Gi(B,S̄i,S̄′i)

> ε̃

]

≤ Pr

[∑
i∈Iin

2ε > ε̃

]
≤ Pr

[
|Iin| >

ε̃

2ε

]
≤ δ,

where the last inequality follows from Claim 5.3.1 and from our choice of

ε̃ = O (ε log(1/δ)) .

5.4 Utility

Proof of Lemma 5.2.7. First, we must ensure that at every iteration, with high prob-
ability, we have enough points left in S̄. At the same time, we must ensure that the
auxiliary algorithm A will output an inner point of the given subset. Denote aj = wj+µ.
By the definition of the noise w and the mean µ, we get that for every iteration i:
Pr[ai > 6∆ log(1/β)] < β. Hence, with probability ≥ 1 − dβ, it holds that for every
i ai ≤ 6∆ log(1/β). This means that the total number of removed points is at most
6d∆ log(1/β). Therefore, for a sample of size 6d∆ log(1/β) with high probability S̄ will
contain enough points.

Regarding the algorithm’s accuracy, we notice that at every iteration j, A outputs a point
which is at least the aj-th largest point from the points left in the set. This means that,
in the worst case, we delete aj points from the data set at this iteration. Hence, again in
worst case, we will output the

∑i
j=1 aj-th largest point in the jth axis.
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By the above reasoning, with high probability we can say that for every i it holds that
aj ≤ 6∆ log(1/β). Meaning that every pj is at least the

∑d
j=1 aj ≤ 6d∆ log(1/β) largest

point in the axis. This implies that, for sample of size O
(
d∆
α
log(1/α) log(1/β)

)
, denoting

the by hp the hypothesis induces by the output of Algorithm 4 PrS∼µn [errS(hp) ≥ α/2] ≤
β/2. Since the VC-dimension of the class RECd is 2d, by Theorem 3.1.6 and the fact that
the sample size is at least as the sample complexity bound O

(
1
α

(
d log

(
1
α

)
+ log

(
1
β

)))
it holds that: PrS∼µn [errµ(hp) ≥ errS(hp) + α/2] ≤ β/2. Combining the two bounds
concludes the proof.



Chapter 6

Universal Private Learning

We prove the existence of universal private learners. As mentioned above, the existence of
such algorithm is in sharp contrast to the impossibility results for PAC-learning. Before
introducing the algorithms and the results, we detail one tool which we will be using for
doing private histogram count, which is one of the most fundamental statistical tasks.
The task is, given a dataset, to count how many times each unique datum appears in the
data. The most common private solution is the Laplace mechanism, which guarantees
(ε, 0)-differential privacy. The main caveat of this approach is that the error, in some
cases, might over-accumulate, since we add noise to every possible domain point. A
different technique, specified in Algorithm 5, is to ignore zero-counts and also zero-out
counts which do not exceed a certain (noisy) threshold. This allows us to avoid the above
accumulation of error, at the cost of guaranteeing privacy with δ > 0. Formally,

Algorithm 5 Stability based Histogram Bun et al. (2019c)
1: Input: Dataset S ∈ X n

2: for x ∈ X do
3: if countS(x) = 0 then
4: ĉ(x)← 0
5: else
6: ĉ(x)← countS(x) + Lap(2/ε)
7: if ĉ(x) < 2

ε
log
(
2
δ

)
+ 1 then

8: ĉ(x)← 0

9: Return ĉ

Theorem 6.0.1 (Bun et al. (2019c)). The Stability based Histogram algorithm is
(ε, δ)-differentially private. Moreover, for every domain point x ∈ X , the resulting count
ĉ(x) is such that if countS(x) = 0 then ĉ(x) = 0, and otherwise E|ĉ(x) − countS(x)| ≤
O
(
1
ε
·min

{
log 1

δ
, countS(x)

})
.

72



CHAPTER 6. UNIVERSAL PRIVATE LEARNING 73

6.1 Classification

Algorithm 6 PCL
1: Input: Sample Sn = {(xi, yi)}ni=1

2: Set r = 1
n1/(2d)

3: Partition the space into equally sized cubes C = C1, C2, . . . with side length r
4: For any x denote C(x) the cube s.t. x ∈ C(x)
5: Define the hypothesis hC s.t. hC(x) = 1∑

xi∈C(x) yi+Lap(1/ε)>
|C(x)|

2

6: Return hC

We begin by studying UC learning over the bounded euclidean space [0, 1]d. Our clas-
sification algorithm is presented in Algorithm 6. In words: we partition the space into
equally sized cubes with side length r. To classify a new point, take the bucket into which
it falls and compute a noisy majority vote within this bucket.

Theorem 6.1.1. Algorithm 6 is ε-differentially private.

Proof. Histogram counts as used in Algorithm 6 have global sensitivity 1 (see (Dwork
et al., 2014)). Hence, adding Laplace noise of scale 1/ε results in ε-differential privacy.
Note that although Step 5 in the algorithm seems to access the data twice, which might
require the scale of the noise to be larger, this is not the case. To see this, notice that
a different way of calculating the same majority-vote is by looking at the following sum∑

x∈Cj
(yi−1/2)+wj, where wj is the noise added to the cube Cj, and outputting 1 if it is

greater than 0 and output 0 otherwise. As such, this amounts to a single calculation with
global sensitivity 1. Hence, by Theorem 3.2.6 the addition of Laplace noise of scale 1/ε

ensures that the noisy counts are private. As the final output is merely a post-processing
of these counts, it is also ε-private.

Theorem 6.1.2. Algorithm 6 is universally-consistent.

Proof of Theorem 6.1.2. Given a test point x ∈ [0, 1]d, denote by A(x) = {Xi ∈ S∩C(x)}
the set of points from S in the same bucket with x, and denote the size of that bucket as
N(x) = Σn

i=11Xi∈A(x). Also define

• η̂n(x) :=
1

N(x)
Σi:xi∈A(x)yi

• η̂εn(x) := η̂n(x) + wj, where wj is the noise added to C(x).

Note, that algorithm PCL is a plug-in classifier w.r.t. η̂εn. Hence, by Theorem 3.1.11, in
order to prove that it is consistent it suffices to show that

lim
n→∞

E [|η̂εn(x)− η(x)|] = 0.
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By the triangle inequality, E
[
|η̂εn(x) − η(x)|

]
≤ E

[
|η̂εn(x) − η̂n(x)|

]
+ E

[
|η̂n(x) − η(x)|

]
.

In order to show that the first term goes to zero we use the following lemma.

Lemma 6.1.3 (Devroye et al. (2013)). For any k ∈ N we have Pr[N(x) ≤ k] −−−→
n→∞

0,

where the probability is over sampling Sn ∼ µn and sampling x ∼ µ.

Using the above lemma, we can bound the expected gap caused by the noise as follows.

E
S,x

E
A

[
|η̂εn(x)− η̂n(x)|

]
≤ E

S,x
E
A

[
|η̂εn(x)− η̂n(x)| · 1N(x)>0

]
+ Pr[N(x) = 0]

= E
S,x

E
wj∼Lap

[
|wj|
N(x)

· 1N(x)>0

]
+ Pr[N(x) = 0]

= E
S,x

[
1

εN(x)
· 1N(x)>0

]
+ Pr[N(x) = 0]

=
1

ε

(
E
[

1

N(x)
| 0 < N(x) < M

]
· Pr(0 < N(x) < M)

+ E
[

1

N(x)
| N(x) ≥M

]
· Pr(N(x) ≥M)

)

+ Pr[N(x) = 0] ≤ 1

ε

(
Pr(N(x) < M) +

1

M

)
. (6.1)

Since this is true for every choice of M and by using Lemma 6.1.3 again, this also can be
made arbitrarily small using a sufficiently large sample size. Hence,

E
[
|η̂εn(x)− η̂n(x)|

] n→∞−−−→ 0. (6.2)

Furthermore, we recall the following result by Devroye et al. (2013)

Theorem 6.1.4 (Devroye et al. (2013)). For any r and n s.t. limn→∞ r = 0 and
limn→∞ nr

d =∞ we get that limn→∞ E [|η̂n(x)− η(x)|] = 0.

Hence, the choice of r = 1
n1/(2d) , together with (6.2) completes the proof.

As we mentioned, in the supplementary material we extend this construction to metric
spaces with finite doubling dimension.

6.2 Density Estimation

We now turn to the problem of density estimation over Rd. In particular, this implies
private UC learning over Rd (rather than over [0, 1]d as in the previous section). We
present the following histogram-based approximation algorithm for density function.
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Algorithm 7 PCDE
1: Input: Sample Sn = {(xi)}ni=1.
2: Set r = 1

n1/(2d)

3: Partition the space into equally sized cubes C := C1, C2, . . . with side length r
4: Apply Stability based Histogram with input Sn to obtain estimates ĉ1, ĉ2, . . . for
c1, c2, . . . , where cj := |{x ∈ Sn : x ∈ Cj}| denotes the number of input points in the
cube Cj.

5: For x ∈ Cj denote c(x) = cj and ĉ(x) = ĉj.
6: Return the function f̂S defined as f̂S(x) := 1

nrd
ĉ(x).

The algorithm make use of the Stability based Histogram algorithm in order to produce
counting estimates while preserving privacy. It then defines the estimator to be the
estimated count normalized with respect to the sample size and the partition-cubes’ size.

Remark 6.2.1. Due to the noises in the counts, the output f̂S of algorithm PCDE might
not be a density function: one needs to zero out negative terms it might contain and
then to normalize it. This has a negligible effect on the distance from the underlying
distribution, and we ignore it for simplicity.1

Theorem 6.2.2. Algorithm 7 is (ε, δ)-differentially private.

Proof. As Stability based Histogram is (ε, δ)-differentially private, and since differen-
tial privacy is closed under post-processing, the output of PCDE is also (ε, δ)-differentially
private.

Theorem 6.2.3. The output of Algorithm 7, denoted by f̂S, is universally consistent for
density estimation in L1 norm. Namely, for every distribution µ over Rd with density
function f we have

lim
n→∞

E
S∼µn

E
f̂S←A(S)

∫
|f(x)− f̂S(x)|dx = 0.

Proof. For sample S and the corresponding partition C, define the classic histogram-
density estimation

fS(x) :=
1

nrd

n∑
i=1

1xi∈C(x). (6.3)

We will be using the following theorem

Theorem 6.2.4 (Devroye et al. (2013), Devroye and Györfi (1985)). Let fS denote the

1In more detail, let f denote the target distribution, let f̂ denote the outcome of the algorithm, and
suppose that the L1 distance between f and f̂ is w. Now let g denote f̂ after zeroing out negative terms
and after normalizing it (as in Remark 6.2.1). An easy calculation (follows from the triangle inequality)
shows that the L1 distance between f and g is at most O(w). This means that if the L1 distance between
f and f̂ goes to zero, then so does the distance between f and g.
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standard histogram estimator (defined as in (6.3)). Then,

lim
n→∞

E
S∼Pn

∫
|f(x)− fS(x)|dx = 0.

Now, by the triangle inequality,

E
S∼µn

E
f̂S←A(S)

∫
|f(x)− f̂S(x)|dx

≤ E
S∼µn

E
f̂S←A(S)

∫
|fS(x)− f̂S(x)|dx+ E

S∼µn

∫
|f(x)− fS(x)|dx. (6.4)

Hence, by Theorem 6.2.4, it suffices to show that limn→∞ ES,f̂S
∫
|fS(x) − f̂S(x)|dx = 0.

To this end, let τ > 0 be some parameter, let T0 be such that there exist a cube T0 of
side-length T0 satisfying µ(T0) > 1− τ. Now let T denote the cube T0 after extending it
by 1 in each direction (so T is a cube of side length T := T0 + 2).

Remark 6.2.5. Recall that the cubes Cj defined by Algorithm 7 are of side length r ≤ 1.
Thus, any cube Cj that intersects T0 is contained in T .

The interior of T will be partitioned into T d

rd
cubes of volume rd. If we restrict our

calculation to T , we get that

E
S∼µn

E
f̂S←A(S)

∫
T
|fS(x)− f̂S(x)|dx =

∫
T
E
S
Ê
fS

|fS(x)− f̂S(x)|dx

≲
∫
T

1

nrd
· 1
ε
log

(
1

δ

)
dx =

1

nrd
· 1
ε
log

(
1

δ

)∫
T
dx

=T d
1

nrd
· 1
ε
log

(
1

δ

)
=

T d

ε
√
n
log

(
1

δ

)
, (6.5)

where the inequality is by Theorem 6.0.1 (after neglecting the constant hiding in the
O-notation) and the last equality is by the choice of r = 1

n1/(2d) .

Outside T , by its definition, we have µ(T̄ ) ≤ µ(T̄0) < τ and therefore

E
[
|S ∩ T̄ |

]
≤ E

[
|S ∩ T̄0|

]
< nτ. (6.6)
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We can calculate that

E
S∼µn

E
f̂S←A(S)

∫
T̄
|fS(x)− f̂S(x)|dx = E

S

∫
T̄
Ê
fS

|fS(x)− f̂S(x)|dx

≤ E
S

∫
T̄

1

εnrd
· c(x) dx =

1

εnrd
· E
S

∫
T̄
c(x) dx

≤ 1

εnrd
· E
S

∑
Cj :Cj∩T̄ ̸=∅

|S ∩ Cj| · rd ≤
1

εnrd
· E
S

∑
Cj :Cj⊆T̄0

|S ∩ Cj| · rd

≤ 1

εnrd
· E
S
|S ∩ T̄0| · rd ≤

τ

ε
, (6.7)

where the first inequality follows from the properties of Stability based Histogram,
and the last inequality follows from (6.6).

Finally, combining (6.5) and (6.7) yields

E
S∼µn

E
f̂S←A(S)

∫
|fS(x)− f̂S(x)|dx

= E
S∼µn

E
f̂S←A(S)

∫
T

|fS(x)− f̂S(x)|dx+ E
S∼µn

E
f̂S←A(S)

∫
T̄

|fS(x)− f̂S(x)|dx

≲
T d

ε
√
n
log

(
1

δ

)
+
τ

ε
.

As T d
√
n

n→∞−−−→ 0 and τ can be arbitrarily small we get that

lim
n→∞

E
S,f̂S

∫
|fS(x)− f̂S(x)|dx = 0.

This completes the proof.

6.2.1 Consistent and Private Semi-Supervised Learning

We next show that the above result yields an application to the setting of semi-supervised
private learning. Let C be a class of concepts. Recall that in the semi-supervised setting,
we are given two samples S ∈ (X ×{0, 1})m and U ∈ (X ×{⊥})n. For simplicity, we will
restrict our discussion in this subsection to the realizable setting. Let us first recall the
definition of semi-supervised learning (SSL) in the distribution free PAC model.

Definition 6.2.6. An algorithm A is said to be an SSL learning algorithm for a class
C if for every α, β there exist m = m(α, β, C) and n = n(α, β, C) such that for every
distribution µ it holds that PrS∼µm,U∼µ̄n,h∼A(S,U) [errµ(h) > α] < β, where µ̄ is the marginal
distribution of the unlabeled samples.

Definition 6.2.7 (Private SSL). An algorithm is said to be a PSSL-learning algorithm
for a class C if it is an SSL-learner for C and also it is (ε, δ)-differentially private.
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As in the standard learning model (where all examples are labeled), semi-supervised
learning can be defined in the distribution-dependent setting, or consistent setting, as
follows.

Definition 6.2.8. An algorithm A is said to be a consistent semi-supervised learner
(CSSL for short) for a class C if for every α, β there exist m = m(α, β, C) such that for
every distribution µ there is some n = n(α, β, C, µ) for which

Pr
S∼µm,U∼µ̄n,h∼A(S,U)

[errµ(h) > α] < β,

where µ̄ is the marginal distribution of the unlabeled samples.

Note that in the above definition, we required the labeled sample complexity to be uniform
over all possible underlying distributions, while allowing the unlabeled sample complexity
to depend on the underlying distribution. This is interesting because with differential
privacy there are cases where semi-supervised learning cannot be done in the distribution-
free setting. We show that it suffices for the unlabeled sample complexity to depend on
the underlying distribution, while keeping the labeled sample complexity independent of
it.

Definition 6.2.9. An algorithm is an (ε, δ)-private consistent semi-supervised learner
(private-CSSL for short) if it is a consistent semi-supervised learner and (ε, δ)-differentially
private.

For the following result, we will be using the notion of semi-private learning. The notion
captures a scenario in which the data is sensitive, but the underlying distribution is
not. This is modeled by defining a semi-supervised learning task in which the learner is
required to preserve privacy only for the labeled part of the sample. Formally, a semi-
private SSL algorithm is an SSL algorithm that satisfies differential privacy w.r.t. its
labeled database (for every fixture of its unlabeled database).

Theorem 6.2.10 (Beimel et al. (2016b); Bassily et al. (2019b)). for any concept class C,
there exists a semi-private SSL algorithm which have a labeled sample complexity of m =

O
(

1
εα
V C(C) log

(
1
αβ

))
and unlabeled sample complexity n = O

(
1
α
V C(C) log

(
1
αβ

))
.

As an application of our results for density estimation, we get the following corollary.

Theorem 6.2.11. For every class C over Rd with V C(C) < ∞ and for every ε, δ,
there exists a proper (ε, δ)-private-CSSL for C whose (labeled) sample complexity is m =

O
(

1
εα
V C(C) log

(
1
αβ

))
.

Remark 6.2.12. Notice that the labeled sample complexity is optimal, as a sample of
size O

(
d(C)

)
is necessary in order to learn a concept class C even without the privacy

requirement.
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Proof of Theorem 6.2.11. Let C be some class with d(C) < ∞. Let A be a semi-private
SSL algorithm for C, as guaranteed by Theorem 6.2.10, and let msemi and nsemi denote
its labeled and unlabeled sample complexities, respectively.

Now fix an underlying distribution µ and let f denote its marginal distribution over
unlabeled examples. By Theorem 6.2.3 there is some n = n

(
β

nsemi
, β, f

)
s.t. we can

privately generate a function f̂ , which is β
nsemi

close (in total variation distance) to the
density function f w.p. 1 − β. We proceed with the analysis assuming that this is the
case.

Let U ∼ fnsemi denote a sample containing nsemi samples from f and let Û ∼ f̂nsemi denote
a sample containing nsemi samples from f̂ . As f, f̂ are β

nsemi
close in total variation distance,

we get that fnsemi and f̂nsemi are β close in total variation distance. By Theorem 6.2.10
we know that

Pr
S∼µmsemi ,
U∼fnsemi

h←A(S,U)

[errµ(h) > α] < β,

and so,
Pr

S∼µmsemi ,

Û∼f̂nsemi

h←A(S,Û)

[errµ(h) > α] < 2β.

The unlabeled sample is accessed only via the private-density estimation algorithm, and
the labeled sample is accessed only via the semi-private learning method. The algorithm
is therefore differentially private by composition and post-processing.

6.3 Metric Spaces with Finite Doubling Dimension

In this section, we extend our results to the more general setting of metric spaces with
bounded doubling dimension. We first present some additional preliminaries.

Definition 6.3.1 (Doubling dimension). For a metric space (X , ρ), let λ > 0 be the
smallest integer such that every ball in X can be covered by λ balls of half the radius. The
doubling dimension of (X , ρ) is ddim(X ) = log2(λ).

Definition 6.3.2. For a metric space (X , ρ), a set of pointsM in X is said to be r-cover
of X if for every x ∈ X there exist some x′ ∈M s.t. ρ(x, x′) ≤ r.

Definition 6.3.3. For a metric space (X , ρ), a set of points N in X is said to be r-packing
of X if for every x, x′ ∈ N ρ(x, x′) ≥ r.

An r-packing N is said to be maximal if for any x ∈ X \N it holds that N ∪ {x} is not
an r-packing of X . Namely, it means that there is some x′ ∈ N s.t. ρ(x, x′) < r.

We will be leveraging the following classical connection between packing and covering.
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Theorem 6.3.4 (Vershynin (2018)).

1. Let N be a maximal r-packing of X , then N is also an r-cover of X .

2. If there exists an r-cover of X of size m, then any 2r-packing of X is of size at
most m.

Definition 6.3.5. A metric space (X , ρ) is separable if it has a countable dense set.
That is, there exists a countable set Q ⊆ X such that every nonempty open subset of X
contains at least one element from Q.

6.3.1 Bounded Doubling Metric Spaces

We begin by proving the following theorem.

Theorem 6.3.6. Let ε ≤ 1 be a constant. There is an (ε, 0)-differentially private univer-
sal consistent learner for every bounded and separable metric space with finite doubling
dimension.

Remark 6.3.7. The separability requirement is in fact necessary. It has been shown
by Hanneke et al. (2021) that metric spaces which are not essentially separable have no
consistent learning rules, even non-private ones.

Let (X , ρ) be a bounded and separable metric space with doubling dimension d. Note
that as X has finite doubling dimension and is bounded, it has a finite covering for every
r. Therefore, a maximal packing of X will also be of finite size.

Consider Algorithm 8, which is an extension of the PCL algorithm. The algorithm
partition the space to Voronoi cells centered in the points corresponding to a maximal
packing. The outputted classifier is then defined as the noisy majority vote for the cell.
The privacy properties of this algorithm are straightforward; we now proceed with its
utility analysis.

Algorithm 8 PCL2
1: Input: Sample Sn = {(xi, yi)}ni=1

2: Set r = 1
n1/(4d)

3: Let N be an r maximal packing of X .
4: Partition the space into Voronoi cells centered in the elements of N : C = V1, V2, . . . .
5: For any x denote V (x) the cell s.t. x ∈ V (x)
6: Define hC(x) = 1∑

xi∈V (x) yi+Lap(1/ε)>
|V (x)|

2

7: Return hC

Given a test point x ∈ X , denote by A(x) = {Xi ∈ S ∩ V (x)} the set of points from S

in the same bucket with x, denote the size of that bucket as N(x) = |A(x)|, and lastly,
N(V ) := 1

n
Σn
i=11Xi∈V which is the relative size of the sample points in V from the entire

sample.
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Lemma 6.3.8. For every V ∈ C it holds that diam (V ) ≤ 2r = 2
n1/(4d)

Proof. Given a center point pi from N , denote by V̂i the ball of radius r around it, and by
Vi the Voronoi cell induced by it. Let a, b ∈ Vi be two points on Vi. By the definition of
Voronoi cells for any other center point pj, it holds that ρ(a, pj) ≥ ρ(a, pi) and ρ(b, pj) ≥
ρ(b, pi). Therefore, if ρ(a, pi) > r or ρ(b, pi) > r, we will get that ∀p ∈ N : ρ(a, p) > r

or ∀p ∈ N : ρ(b, p) > r, which is a contradiction to the covering property of N . Hence,
we get that ρ(a, pi) ≤ r and ρ(b, pi) ≤ r which, by the triangle inequality, result in
ρ(a, b) ≤ r.

Lemma 6.3.9. For any k = k(n) such that k(n) = o(n1/4) we have Pr[N(x) ≤ k] −−−→
n→∞

0,

where the probability is over sampling Sn ∼ µn and sampling x ∼ µ.

Remark 6.3.10. This theorem (and its proof) holds for both bounded and unbounded
spaces. We decided to provide it in this general form as we also make use of it to analyze
the unbounded case later on.

Proof. Let θ = n1/(2d), let T ⊆ X be a ball of radius θ, and denote T̄ := X \ T . Also let
Tbig be a ball cantered at the same point as T , but with twice the radius.

By the doubling dimension of the domain, it is possible to cover Tbig with
(
4θ
r

)d small
balls each of radius r/2. By Theorem 6.3.4, this implies that any r-packing of T is of
size at most

(
4θ
r

)d. In particular, N ∩Tbig is of size at most
(
4θ
r

)d. Now observe that any
Voronoi cell that intersects T is contained in Tbig. As every such Voronoi cell corresponds
to a unique point in N ∩ Tbig, we get that there are at most

(
4θ
r

)d Voronoi cell that
intersects T . As we set r = 1

n1/(4d) , this quantity equals (4θ · n1/(4d))d.

Pr[N(x) ≤ k] ≤
∑

V ∈C:V ∩T ̸=∅

Pr(N(x) ≤ k, x ∈ V ) + Pr(T̄ )

≤
∑

V ∩T ̸=∅,Pr(V )≤2k/n

Pr(V ) +
∑

V ∩T ̸=∅
Pr(V )>2k/n

Pr(V ) Pr

(
N(V ) ≤ k

n

)
+ Pr(T̄ )

≤ 2k

n
(4θ · n1/(4d))d + Pr(T̄ ) +

∑
V ∩T ̸=∅

Pr(V )>2k/n

Pr(V ) Pr

(
N(V )− E [N(V )] ≤ k

n
− Pr(V )

)

≤ 2k

n
(4θ · n1/(4d))d + Pr(T̄ ) +

∑
V ∩S ̸=∅

Pr(V )>2k/n

Pr(V ) Pr

(
N(V )− E [N(V )] ≤ −Pr(V )

2

)
(6.8)

From this point, the proof proceeds in the same steps as in Devroye et al. (2013, Theorem
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6.2). By Chebyshev’s inequality,

(6.8) ≤ 2k

n
(4θ · n1/(4d))d + Pr(T̄ ) +

∑
V ∩S ̸=∅,Pr(V )≥2k/n

4Pr(V )
V ar(N(V ))

Pr(V )2

≤ 2k

n
(4θ · n1/(4d))d + Pr(T̄ ) +

∑
V ∩S ̸=∅,Pr(V )≥2k/n

4Pr(V )
Pr(V )(1− Pr(V ))

nPr(V )2

≤ 2k

n
(4θ · n1/(4d))d + Pr(T̄ ) +

∑
V ∩S ̸=∅,Pr(V )≥2k/n

4Pr(V )
Pr(V )

nPr(V )2
(6.9)

When the second inequality is due to the variance of the binomial variable N(V ).

(6.9) ≤ 2k + 4

n
(4θ · n1/(4d))d + Pr(T̄ )

=
(4θ)d

n3/4
(2k + 4) + Pr(T̄ ) =

4d

n1/4
(2k + 4) + Pr(T̄ )

Clearly, the first summand goes to zero when n→∞ (recall that k = o(n1/4)). As for the second
summand, recall that θ goes to ∞ when n→∞, and so Pr(T̄ ) goes to zero when n→∞.

We will make use of the following theorem.

Theorem 6.3.11. Given a separable metric space, a partition based classification rule is
universally-consistent if

1. diam (V (x)) −−−→
n→∞

0

2. For every constant k ∈ N it holds that Pr[N(x) ≤ k] −−−→
n→∞

0

This theorem is an extension of Devroye et al. (2013, Theroem 6.1), where it is stated
only for Rd. The proof of this theorem appears in Section 6.4 for completeness.

Putting it all together, we now prove the following theorem.

Theorem 6.3.12. Algorithm 8 is universally-consistent.

Proof. Define

• η̂n(x) :=
1

N(x)
Σi:xi∈A(x)yi

• η̂εn(x) := η̂n(x) + wj, where wj is the noise added to V (x).

The proof is close in nature to the proof of Theorem 6.1.2. We note, that algorithm PCL2

is a plug-in classifier w.r.t. η̂εn. Hence, by Theorem 3.1.11, in order to prove that it is
consistent it suffices to show that

lim
n→∞

E [|η̂εn(x)− η(x)|] = 0.
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By the triangle inequality, E
[
|η̂εn(x) − η(x)|

]
≤ E

[
|η̂εn(x) − η̂n(x)|

]
+ E

[
|η̂n(x) − η(x)|

]
.

By the same arguments as in Theorem 6.1.2 we get that

E
S,x

E
A

[
|η̂εn(x)− η̂n(x)|

]
≤ 1

ε

(
Pr(N(x) < M) +

1

M

)
(6.10)

Since this is true for every choice of M and by using Lemma 6.3.9, this also can be made
arbitrarily small using sufficiently large sample size. Hence,

E
[
|η̂εn(x)− η̂n(x)|

] n→∞−−−→ 0. (6.11)

In order to show that limn→∞ E
[
|η̂n(x) − η(x)|

]
= 0, by Theorem 6.3.11, it suffices to

show that the following two conditions hold:

1. diam (V (x)) −−−→
n→∞

0

2. Pr[N(x) ≤ k] −−−→
n→∞

0

The first condition follows from Lemma 6.3.8 and the second condition follows from
Lemma 6.3.9.

6.3.2 Unbounded Doubling Metric Spaces

We now extend the previous result to the case of unbounded doubling metric spaces. This
extension comes at the cost of relaxing the privacy requirement from pure-privacy to
approximated-privacy. Formally, we show the following theorem.

Theorem 6.3.13. Let ε ≤ 1 be a constant and let δ : N→ [0, 1] be a function satisfying
δ(n) = ω(2−n

1/4
). There is an (ε, δ(n))-differentially private universal consistent learner

for every separable (possibly unbounded) metric space with finite doubling dimension.

Let (X , ρ) be a separable doubling metric space with doubling dimension d. Consider
Algorithm 9.

Note that, as X is separable, it has a countable covering and countable maximal packing
for every r, and hence step 3 is well-defined. 2 Moreover, by Theorem 6.0.1 the number
of non-empty cells will be finite, hence the hypothesis defined at step 10 is well-defined.

Theorem 6.3.14. Algorithm 9 is (2ε, 2δ)-differentially private.

Proof of Theorem 6.3.14. As Stability based Histogram is (ε, δ)-differentially private,
and since differential privacy is closed under post-processing, by standard composition

2Clearly, every separable space has a countable covering. As the cardinality of a packing can be
bounded by the cardinality of a cover, we get that the cardinality of every packing must also be countable.
Formally, given a 2r-packing N and an r-coverM, as every r-ball centered around a point inM contains
at most one point from N , we get that there is an injection from N to M. Hence the cardinality of N
is bounded by that of M.
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Algorithm 9 PCL2b
1: Input: Sample Sn = {(xi, yi)}ni=1

2: Set r = 1
n1/(4d)

3: Let N be a countable r maximal packing of X .
4: Partition the space into Voronoi cells centered in the elements of N : C = V1, V2, . . . .
5: For any x denote V (x) the cell V s.t. x ∈ V
6: Apply Stability based Histogram with input Sn to obtain estimates ĉ1, ĉ2, . . . such

that ĉj ≈ |{x ∈ Sn : x ∈ Vj}|.
7: For any x denote ĉ(x) = ĉj such that x ∈ Vj.
8: Apply Stability based Histogram with input S1

n := {x ∈ Sn : y = 1} to obtain
estimates ŷ1, ŷ2, . . . such that ŷj ≈ |{x ∈ Sn : y = 1, x ∈ Vj}|.

9: For any x denote ŷ(x) = min{ŷj, ĉj} such that x ∈ Vj.
10: Define the hypothesis hC s.t. hC(x) = 1

ŷ(x)>
ĉ(x)
2

11: Return hC

theorems the output of PCL2b is (2ε, 2δ)-differentially private.

Theorem 6.3.15. Algorithm 9 is universally-consistent.

Proof. Define

• η̂n(x) :=
1

N(x)
Σi:xi∈A(x)yi

• η̂ε,δn (x) :=


ŷ(x)
ĉ(x)

ĉ(x) ̸= 0

0 ĉ(x) = 0
.

Most of the arguments which were made for Algorithm 8 in the proof of Theorem 6.3.12
can be made also for Algorithm 9. The only part of the proof that requires attention is
to show that limn→∞ E

[
|η̂ε,δn (x)− η̂n(x)|

]
= 0. We calculate,

E
S,x,A

[
|η̂ε,δn (x)− η̂n(x)|

]
= E

S,x

[
E
A

[
|η̂ε,δn (x)− η̂n(x)|

]]
≤ E

S,x

[
E
A

[
|η̂ε,δn (x)− η̂n(x)|

]
· 1N(x)>0

]
+ Pr[N(x) = 0]

= E
S,x

[
E
A

[∣∣∣∣∣ ŷ(x)ĉ(x)
−
∑

i:xi∈A(x) yi

N(x)

∣∣∣∣∣
]
· 1N(x)>0

]
+ Pr[N(x) = 0]

≤ E
S,x

[
E
A

[∣∣∣∣∣
∑

i:xi∈A(x) yi

N(x)
− ŷ(x)

N(x)

∣∣∣∣∣+
∣∣∣∣ ŷ(x)N(x)

− ŷ(x)

ĉ(x)

∣∣∣∣
]
· 1N(x)>0

]
+ Pr[N(x) = 0]

≤ E
S,x

[
O

(
1
ε log

1
δ

N(x)

)
· 1N(x)>0

]
+ Pr[N(x) = 0]
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≈ 1

ε
log

1

δ
· E
S,x

[
1

N(x)
· 1N(x)>0

]
+ Pr[N(x) = 0]

=
1

ε
log

1

δ
·

(
E
[

1

N(x)
· 1N(x)>0

∣∣∣∣N(x) < M

]

· Pr[N(x) < M ] + E
[

1

N(x)

∣∣∣∣N(x) ≥M
]
· Pr[N(x) ≥M ]

)
+ Pr[N(x) = 0]

≤ 1

ε
log

1

δ
·

(
Pr[N(x) < M ] +

1

M

)
+ Pr[N(x) = 0]

≤ 2

ε
log

1

δ

(
Pr(N(x) < M) +

1

M

)
(6.12)

Since this is true for every choice of M and by using Lemma 6.3.9, this also can be made
arbitrarily small using sufficiently large sample size 3. Hence,

E
[
|η̂ε,δn (x)− η̂n(x)|

] n→∞−−−→ 0. (6.13)

Remark 6.3.16. Unlike our results for the (unbounded) euclidean case, where we showed
a construction for a density estimator, for (unbounded) metric spaces with finite doubling
dimension we only show a learner. The reason is that in our construction of a density
estimator for the euclidean case we needed to compute volumes of the cells in the partition.
In general metric spaces, however, we do not have a canonical analogue for the volume
of a cell.

6.4 Additional Details for Completeness

The proofs provided in this section are taken from Devroye et al. (2013). We include
them here for completeness, as in Devroye et al. (2013) these theorems are stated only
for Rd.

Theorem 6.4.1. For a probability space (X , µ), let η̂ : X → [0, 1] be any function, and
let ĥ be the plug-in classification rule w.r.t. η̂. Then the following holds

Pr
(X,Y )

[ĥ(X) ̸= Y ]− L∗ ≤ 2E [|η(X)− η̂(X)|]

3Note that, δ can decay exponentially fast as a function of M and hence also as a function of n,
allowing the same δ(n) = ω(2−

√
n) dependency as in Theorem 1.2.6
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Proof of Theorem 6.4.1. Given x ∈ X , if h∗(x) = ĥ(x), then

Pr
(X,Y )

[ĥ(X) ̸= Y | X = x] = Pr
(X,Y )

[h∗(X) ̸= Y | X = x].

On the other hand if h∗(x) ̸= ĥ(x), then

|η(X)− η̂(X)| ≥ |η(X)− 1

2
|.

Therefore

Pr
(X,Y )

[h∗(X) ̸= Y | X = x]− Pr
(X,Y )

[ĥ(X) ̸= Y | X = x]

= (2η(x)− 1)(1h∗(X)=1 − 1ĥ(x)=1) = |2η(x)− 1| · 1h∗(X )̸=ĥ(x)

By the law of total probability

Pr
(X,Y )

[ĥ(X) ̸= Y ]− L∗

=

∫
x∈X

Pr
(X,Y )

[h∗(X) ̸= Y | X = x]− Pr
(X,Y )

[ĥ(X) ̸= Y | X = x]dx

=

∫
x∈X
|2η(x)− 1| · 1h∗(X )̸=ĥ(x)µ(x)dx

=

∫
x∈X

2|η(x)− 1

2
| · 1h∗(X )̸=ĥ(x)µ(x)dx

= E
[
2|η(X)− 1

2
| · 1h∗(X )̸=ĥ(X)

]
≤ 2E [|η(X)− η̂(X)|]

Proof of Theorem 6.3.11. As any partition rule is a special case of a plug-in estimator,
we need to show that E [|η(x)− η̂n(x)|] −−−→

n→∞
0. Define η̄(x) := E[η(z) | z ∈ V (x)]. By

the triangle inequality

E [|η(x)− η̂n(x)|] ≤ E [|η(x)− η̄(x)|] + E [|η̄(x)− η̂n(x)|]

Examine the random variable N(x)η̂n(x), which is the number of labeled-one points
falling in the same "bucket" as x. By conditioning upon which points fall in this bucket,
the remaining randomness in this r.v. is only which of them will be labeled one. This is
then simply a binomial random variable with "success" probability η̄(x) and N(x) trials.
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Thus,

E

[
|η̄(x)− η̂n(x)| | 1x1∈V (X), . . . ,1xn∈V (X)

]

≤ E

[
|N(x)η̂n(x)

N(x)
− η̄(x)| | 1N(x)>0,1x1∈V (X), . . . ,1xn∈V (X)

]

≤ E

[(
N(x)η̂n(x)

N(x)
− η̄(x)

)2

| 1N(x)>0,1x1∈V (X), . . . ,1xn∈V (X)

]1/2

≤ E

[
η̄(x)(1− η̄(x))

N(x)
1N(x)>0 | 1x1∈V (X), . . . ,1xn∈V (X)

]1/2
(6.14)

When the second inequality is by the Jensen inequality and the third by the variance of a
binomial distribution. Next, note that η̄(x)(1− η̄(x)) ≤ 1

4 and hence,

(6.14) ≤ E
[

1

4N(X)
| N(X) > 0

]1/2
Pr[N(n) > 0] + Pr[N(X) = 0]

≤ E
[

1

4N(X)
| N(X) > 0

]1/2
Pr[N(n) > 0] + Pr[N(X) = 0]

≤ 1

2
Pr[N(x) ≤ k] + 1

2
√
k
+ Pr[N(X) = 0] (6.15)

This is true for any k. Therefore (6.15) can be made arbitrarily small by choosing k large enough
and then by condition (2) in the theorem’s conditions.

Moving on to the first summand. For any τ > 0, there exists a uniform continuous real-valued
function ητ , such that E [|η(x)− ητ (x)|] < τ . Such a function exists, since for a separable metric
space, the set of uniformly continuous, real valued functions is dense, in ℓ1 norm, in the set of
all continuous, real valued, functions. Define η̄τ (x) := E[ητ (z) | z ∈ V (x)] and by the triangle
inequality,

E [|η(x)− η̄(x)|]

≤ E [|η(x)− ητ (x)|] + E [|ητ (x)− η̄τ (x)|] + E [|η̄τ (x)− η̄(x)|]

=: (∗) + (∗∗) + (∗ ∗ ∗).

By the choice of ητ (x), the (∗) ≤ τ . Also, by the definitions for η̄ and η̄τ (x) the (∗∗∗) ≤ (∗) ≤ τ .
Finally, as ητ (x) is uniformly continuous, there exist some θ s.t. the difference between points
which are θ-close is bounded by τ . Hence, we get that (∗∗) ≤ τ + Pr(diam (V (x)) > θ), when
by condition (1) of the theorem’s conditions, can be made less than τ for large enough n. All
in all, we showed that for any given τ we can ensure that E [|η(x)− η̄(x)|] < τ, for large enough
n.



Chapter 7

Adaptive Data Analysis

In this chapter, we investigate various extensions enabling adaptive data analysis for
correlated observations. We show that some of the directions and tools from the lit-
erature can be used for this setting, if we look at the right setting or the appropriate
measurements.

7.1 Adaptive Generalization via Differential Privacy

We start by extending the connection between differential privacy and adaptive data
analysis into settings where the data is not sampled in an i.i.d. fashion, but rather there
are some small/bounded dependencies. We start by proving the following lemma, show-
ing that differential privacy guarantees generalization in expectation. The proof of this
lemma mimics the analysis of Bassily et al. (2016) for the i.i.d. setting. We extend the
proof to the case where there are dependencies in the data, and show that we can "pay"
for these dependencies in a way that scales with ψ.

Lemma 7.1.1 (Expectation bound). Let A′ : (X n)T → 2X× [T ] be an (ε, δ)-differentially
private algorithm. Let µ be a distribution over X n which has ψ-Gibbs-dependence. Let
S⃗ = (S1, . . . , ST ) where for every i Si ∼ µ. Denote by (h, t) the output of A′(S⃗). Then
|ES⃗,A′ [h(µ)− h(St)]| ≤ eε + Tδ + ψ − 1.

Proof. We consider a multi sample S⃗ = (S1, . . . , ST ), where St = (xt,1, . . . , xt,n) ∼ µ. We
calculate,

88
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E
S⃗∼µT

[
E

(h.t)∼A′(S⃗)
[h(St)]

]

= E
S⃗∼µT

[
E

(h.t)∼A′(S⃗)

[
1

n

n∑
i=1

h(xt,i)

]]

=
1

n

n∑
i=1

[
E

S⃗∼µT

[
E

(h.t)∼A′(S⃗)
[h(xt,i)]

]]

=
1

n

n∑
i=1

[
E

S⃗∼µT

[
Pr

(h.t)∼A′(S⃗)
[h(xt,i) = 1]

]]

=
1

n

n∑
i=1

[
E

S⃗∼µT

[
T∑

m=1

Pr
(h.t)∼A′(S⃗)

[h(xm,i) = 1 ∧ t = m]

]]

=
1

n

n∑
i=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[
T∑

m=1

Pr
(h.t)∼A′(S⃗)

[h(xm,i) = 1 ∧ t = m]

]]]
, (7.1)

where z⃗ = (z1, . . . , zT ) is a vector s.t. zt ∼ µi(· | S−it ). Given a multi-sample S⃗ and an
element z, we write S⃗(m,i)←z to denote the multi-sample S⃗ after replacing the ith element
in the mth sample Sm with z. Since A′ is (ε, δ)-differentially private we get that the above
is at most

(7.1) ≤ 1

n

n∑
i=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[
T∑

m=1

eε Pr
(h.t)∼A′(S⃗(m,i)←zm )[

h(xm,i) = 1 ∧ t = m

]
+ δ

]]]

=Tδ + eε · 1
n

n∑
i=1

T∑
m=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[

Pr
(h.t)∼A′(S⃗(m,i)←zm )

[
h(xm,i) = 1 ∧ t = m

]]]]

=Tδ + eε · 1
n

n∑
i=1

T∑
m=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[

Pr
(h.t)∼A′(S⃗)

[h(zm) = 1 ∧ t = m]

]]]
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=Tδ + eε · 1
n

n∑
i=1

T∑
m=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[

Pr
(h.t)∼A′(S⃗)

[h(zt) = 1 ∧ t = m]

]]]

=Tδ + eε · 1
n

n∑
i=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[
T∑

m=1

Pr
(h.t)∼A′(S⃗)

[h(zt) = 1 ∧ t = m]

]]]

=Tδ + eε · 1
n

n∑
i=1

[
E

S⃗∼µT

[

E
z⃗∼µ⃗i|S⃗

[
Pr

(h.t)∼A′(S⃗)
[h(zt) = 1]

]]]

=Tδ + eε
1

n

n∑
i=1

[
E

S⃗∼µT

[
E

z⃗∼µ⃗i|S⃗

[
E

(h.t)∼A′(S⃗)
[h(zt)]

]]]

=Tδ + eε
1

n

n∑
i=1

[
E

S⃗∼µT

[
E

(h.t)∼A′(S⃗)

[
E

z⃗∼µ⃗i|S⃗
[h(zt)]

]]]

=Tδ + eε · 1
n

n∑
i=1

[
E

S⃗∼µT

[

E
(h.t)∼A′(S⃗)

[
E

z∼µi(·|S−i
t )

[h(z)]

]]]
. (7.2)

Since total variation is a special case of the Wasserstein metricW1, Kantorovich-Rubinstein
duality implies that for two probability measures µ, ν on a space X and any function h : X →
[0, 1], we have |Ez∼µ[h(x)]−Ez∼ν [h(z)]| ≤ ∥µ− ν∥TV. Applying this to µi(· | S−it ) and µi we get
that the above is at most

(7.2) ≤Tδ + eε · 1
n

n∑
i=1

[
E

S⃗∼µT

[
E

(h.t)∼A′(S⃗)

[
E

z∼µi

[
h(z)

]
+
∥∥µi(· | S−it )− µi

∥∥
TV

]]]
≤ψ + Tδ + eε · E

S⃗∼µT

[
E

(h.t)∼A′(S⃗)

[
1

n

n∑
i=1

E
z∼µi

[
h(z)

]]]
=ψ + Tδ + eε · E

S⃗,A′(S⃗)
[h(µ)]

≤ψ + Tδ + eε − 1 + E
S⃗,A′(S⃗)

[h(µ)] ,
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where the last inequality is due to the fact that yeε ≤ eε − 1 + y for y ≤ 1 and ε ≥ 0. In
summary,

E
S⃗∼µT

[
E

(h.t)∼A′(S⃗)
[h(St)]

]
≤ ψ + Tδ + eε − 1 + E

S⃗,A′(S⃗)
[h(µ)] .

The other direction is symmetric.

We use Lemma 7.1.1 to prove the following high-probability generalization bound for
differentially private algorithms.

Theorem 7.1.2 (High probability bound). Let ε ∈ (0, 1/3), δ ∈ (0, ε/4) and n ≥
log(2kε/δ)

ε2
. Let A : X n → (2X )k be an (ε, δ)-differentially private algorithm. Let µ be

a distribution over X n and S be a sample of size n drawn from µ, and let h1, . . . , hk be
the output of A(S). Then

Pr
S,A(S)

[
max
i∈[k]
|hi(µ)− hi(S)| ≥ 10ε+ 2ψ

]
≤ δ

ε
.

The proof of Theorem 7.1.2 is almost identical to the analysis of Bassily et al. (2016). It
appears in the appendix for completeness. Intuitively, the proof is as follows. We assume,
towards contradiction, that there may be a differentially private algorithm that does not
enjoy strong generalization guarantees. We then use this mechanism to describe a different
differentially private algorithm with a "boosted inability" to generalize. That is, the proof
goes by saying that if there is a differentially private algorithm whose generalization
properties are not "very good" then there must exist a differentially private algorithm
whose generalization properties are "bad", to the extent that contradicts Lemma 7.1.1.

Our connection between Gibbs-dependence and differential privacy (Theorem 1.3.2) now
follows as a corollary of Theorem 7.1.2.

Proof of Theorem 1.3.2. M is (ε, δ)-differentially private. Since A can only access the
data via M, we can treat the pair A,M as a single algorithm A, which gets a sample
S ∼ µ as input and returns k predicates, as output. By closure to post-processing, A is
also (ε, δ)-differentially private. Applying Theorem 7.1.2 on A we get that

Pr

[
max
i∈[k]
|hi(µ)− hi(S)| ≥ 10ε+ 2ψ

]
≤ δ

ε
.
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SinceM is (α, β)-empirically-accurate it holds that

Pr

[
max
i∈[k]
|qi(S)− ai| > α

]
≤ β.

Combining these two bounds with the triangle inequality, we get

Pr

[
max
i∈[k]
|qi(µ)− ai| > α+ 10ε+ 2ψ

]
< β +

δ

ε
.

7.1.1 A Tight Negative Result for Differential Privacy and Gibbs-

Dependence

In this section, we construct a distribution which is ψ-Gibbs-Dependant, and describe a
differentially-private algorithm whose generalization gap w.r.t. this distribution is at least
ψ. Hence, in general, the ψ factor attained on Theorem 1.3.2 is tight up to a constant.
Let X = [0, 1] and define a measure µ over X n by the following random process:

1. Sample a point x∗ ∼ U ([0, 1]).

2. For every i ∈ [n] :

(a) Sample σ ∼ Ber (ψ).

i. If σ = 1 then xi = x∗.

ii. Otherwise xi ∼ U ([0, 1])

3. Return S = (x1, . . . , xn)

Lemma 7.1.3. The measure defined by the above process has ψ-Gibbs-dependency.

Proof. Initially, every marginal distribution is just uniform, i.e. µi ∼ U ([0, 1]) and hence,
for every A ⊆ [0, 1] it holds that µi(A) = |A|. After conditioning, for every possible x−i

and x∗, we get that

µi(A | x−i, x∗)

=µi(A \ {x∗} | x−i, x∗) + µi(A ∩ {x∗} | x−i, x∗)

∈
(
|A|(1− ψ), |A|(1− ψ) + ψ

)
.

Since the above holds for every choice of x∗, we also have that

µi(A | x−i) ∈
(
|A|(1− ψ), |A|(1− ψ) + ψ

)
.
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Therefore, for every A ⊆ [0, 1] it holds that

|µi(A)− µi(A | x−i)|

≤ max {|A| − |A|(1− ψ) , |A|(1− ψ) + ψ − |A|} ≤ ψ.

So ∥µi(·)− µi(· | x−i)∥TV ≤ ψ. Plugging this bound to the Gibbs-dependency definition
yields

ψ(µ) = sup
x∈Xn

E
i∼[n]

∥∥µi(·)− µi(· | x−i)∥∥TV
≤ ψ.

We next describe an algorithm that, despite being differentially private, performs "badly"
when executed on samples from the above measure µ. Specifically, this algorithm is
capable of identifying a predicate with generalization error Ω(ψ). This shows that our
connection between differential privacy and generalization (in the correlated setting) is
tight, in the sense that the generalization error of differentially private algorithms can
grow with ψ. This matches our positive result (see Theorem 1.3.2).

Our algorithm is specified in Algorithm 10. As a subroutine, we use the following result
of Bun et al. (2019b) for privately computing histograms.

Theorem 7.1.4 (Private histograms, Bun et al. (2019b)). There exists an (ε, δ)-differ-
entially private algorithm that takes an input dataset S ∈ X n and returns an a list L ⊆ X
such that with probability at least 1 − β, every x ∈ X that appears at least O

(
1
ε
log 1

βδ

)
times in S is included in L, and furthermore, every x ∈ L appears at least twice in S.

Algorithm 10 Deviating Private Algorithm
Input: A sample S, privacy parameters ε, δ.
Tool used: An (ε, δ)-DP algorithm H for histograms.
L← H(S, ε, δ)
if L is empty then

Return h ≡ 0
else

Let x be an arbitrary element in L
Define h : X → [0, 1] as h = 1x

Return h

Lemma 7.1.5. For every β > 0, every n ≥ O
(

1
ψε

log 1
βδ

)
, and for every ψ < 1 Algo-

rithm 10 is (ε, δ)-differentially private and it outputs a predicate h : X → [0, 1] s.t.

Pr

[
|h(S)− h(µ)| ≥ ψ

2

]
> 1− β − exp

(
−n
8

)
.

Proof. First observe that Algorithm 10 is (ε, δ)-differentially private, as it merely post-
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processes the outcome of the private histogram algorithm.

Next observe that, by the definition of the underlying measure µ, and by our choice of n,
w.h.p., there are many copies of x∗ in the dataset S. Formally, by the Chernoff bound,

Pr

[
1

n
|{x′ ∈ S | x′ = x∗}| < 1

2
ψ

]
= Pr

[
1

n

n∑
i=1

σi <
1

2
ψ

]
≤ exp

(
−n
8

)
.

In addition, the probability of any element x ̸= x∗ appearing more than once in S is
simply zero. Thus, with probability at least 1− exp

(
−n

8

)
we have that x∗ appears in S

at least nψ/2 = Ω(1
ε
log( 1

β
δ)) times, and every other element appears in S at most once.

By the properties of the private histogram algorithm (see Theorem 7.1.4), in such a case,
with probability at least 1 − β we have that L = {x∗}, and Algorithm 10 returns the
hypothesis h = 1x∗ . As x∗ appears many times in S, this predicate has "large" empirical
value. On the other hand, for such predicate it holds that

h(µ) = E
x̄∗,x̄1,...,x̄n

[
1

n

(
n∑
i=1

h(x̄i)

)]

=
1

n

(
n∑
i=1

Pr
x̄∗,x̄1,...,x̄n

[x̄i = x∗]

)
= 0

as the probability that for a fresh new sampling we will get x̄∗ = x∗ is zero, implying that
the probability that any point in the sample to be x∗ is also zero.

Overall, with probability at least 1− β − exp
(
−n

8

)
, the algorithm returns a predicate h

such that h(S) ≥ ψ/2 but h(µ) = 0.

7.2 Adaptive Learning Via Transcript Compression

In this section we show how the notion of transcript compressibility can be used to derive
generalization bounds even if the data is not i.i.d. distributed. We start by recalling the
notion of transcript compression by Dwork et al. (2015a). We denote by AGn,k(A,M, S)

the transcript of the interaction between the mechanism M and the analysis A during
the adaptive accuracy game defined in Algorithm 1 with sample of size n and k queries.

Definition 7.2.1 (Transcript Compression (Dwork et al., 2015a)). We say that a mecha-
nism M enables transcript compression to b(n, k)-bits, if for every deterministic analyst
A there exist a set of possible transcripts HA, of size |HA| ≤ 2b(n,k), s.t. for every sample
S it holds that Pr [AGn,k(A,M, S) ∈ H] = 1.
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Following Bassily and Freund (2016), in this section we aim to design mechanisms that
answer adaptively chosen queries while providing statistical accuracy, under the assump-
tion that the given queries are concentrated around their expected value. Unlike Bassily
and Freund (2016), we aim to achieve this goal using the notion of transcript compression,
rather than typical-stability. As we show, this allows for a significantly simpler analysis
(and definitions). Formally,

Definition 7.2.2. Given a measure µ over X , a query q : X n → R, and a parameter
δ ∈ [0, 1], we write γ(q, µ, δ) to denote the minimal number γ ∈ [0, 1] such that

Pr
S∼µ

[
|q(S)− E

T∼µ
[q(T )]| > γ

]
< δ.

That is, γ(q, µ, δ) denotes the minimal number such that, without adaptivity, q(S) devi-
ates from its expectation by more than γ(q, µ, δ) with probability at most δ when sampling
S ∼ µ.

Remark 7.2.3. The results in this section are not restricted to statistical queries. The
results in this section hold for arbitrary queries (mapping n-tuples to the reals).

Consider again Algorithm 1 and Definition 3.1.15 (the definition of statistical accuracy).
We now use Definition 7.2.2 in order to introduce a relaxation for statistical accuracy, in
which the mechanism is allowed to incur γ(q, µ, δ) as an additional error.

Definition 7.2.4. A mechanismM is (α, β, δ)-statistically-query-accurate for k rounds
given n samples, if for every distribution µ over n-tuples, and every adversary A, it holds
that

Pr
S∼µ

Game(M,k,A,S)

[
max
i∈[k]
|qi(µ)− ai| > α+ γ(qi, µ, δ)

]
≤ β.

Remark 7.2.5. For a statistical query q and a product measure µ, by Hoeffding’s in-
equality, we get that γ(q, µ, δ) =

√
1
2n

ln 2
δ
. Hence, for the i.i.d. regime, for large enough

samples, the definition of (α, β, δ)-statistical-query-accuracy is in fact equivalent (up to
factor 2) to the original definition of (α, β)-statistical-accuracy (Definition 3.1.15).

We observe that the analysis of Dwork et al. (2015a) for transcript compression easily ex-
tends to non-i.i.d. measures when given concentrated queries. Somewhat surprisingly, this
simple technique essentially matches the bounds obtained using typical stability (Bassily
and Freund, 2016). In the next lemma we show that (w.h.p.) an analyst interacting with
a transcript-compressing mechanism cannot identify a query that overfits to the data.

Lemma 7.2.6. Let M be a mechanism which enables transcript compression to b(n, k)-
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bits. For every measure µ and every analyst A,

Pr
S,AGn,k

[∃i : |qi(S)− qi(µ)| ≥ γ(q, µ, δ)] ≤ δ · k · 2b(n,k)

Proof. Fix an analyst A. By Definition 7.2.1, there exist a set of transcripts HA of size
at most 2b(n,k). As every transcript consists of at most k queries, there can be at most
k2b(n,k) possible queries over all possible interactions between A andM. Denote this set
of possible queries as QA. By a union bound we get that

Pr
S∼µ

[ ∨
q∈QA

|qi(S)− qi(µ)| ≥ γ(q, µ, δ)

]
≤ δ · k · 2b(n,k),

and hence
Pr

S,AGn,k

[∃i : |qi(S)− qi(µ)| ≥ γ(q, µ, δ)] ≤ k · δ · 2b(n,k).

Using the above lemma, we prove our main theorem for this section.

Theorem 7.2.7. LetM be a mechanism which enables transcript compression to b(n, k)
bits and also exhibits (α, β)-empirical-accuracy for k rounds given n samples. Then M
is also (α, β + δk2b(n,k), δ)-statistically-query-accurate, for every choice of δ.

Proof. As M is (α, β)-empirically-accurate and also enables transcript compression to
b(n, k) bits, by Lemma 7.2.6 and the union bound

Pr
S,AGn,k

[
(∃i : |qi(S)− qi(µ)| > γ(q, µ, δ))

∨ (∃i : |qi(S)− ai| > α)
]

≤ β+δ · k · 2b(n,k).

Hence by the triangle inequality

PrS,AGn,k
[∃i : |ai − qi(µ)| ≥ α + γ(q, µ, δ)]

≤ β + δ · k · 2b(n,k).

Applying Theorem 7.2.7 together with the transcript-compressing mechanisms of Dwork
et al. (2015a), we get the following two results.

Theorem 7.2.8. For every α, δ, there exists an (α, β, δ)-statistically-query-accurate mech-
anism for k rounds given n samples, where β = k · δ · 2k·log 1

α . The mechanism is compu-
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tationally efficient.

Theorem 7.2.9. For every δ, there exists an (α, β, δ)-statistically-query-accurate mech-
anism for k rounds given n samples, where

α = O

((
ln k

n

)1/4
)

and β = k · δ · 2Õ(
√
n·log |X |·(log k)3/2).

The mechanism is computationally inefficient.

7.3 Application to Markov Chains

In this section, we demonstrate an application of our tools and results regarding Gibbs-
dependency and differential privacy to the problem of learning Markov chains adaptively.
For our notion of dependence, it will be more convenient to analyze the Undirected Markov
Chains. By the Hammersley-Clifford theorem (Hammersley and Clifford, 1971; Clifford,
1990), every Markov measure on a chain graph with nonzero transition probabilities can
be factorized according to pairwise potential functions (formalized below), which we refer
to as the undirected Markov chain formalization (Kontorovich, 2012).

The formal definition of an undirected Markov chain measure is as follows.

Definition 7.3.1. A measure µ over Ωn is an undirected Markov chain if there are
positive functions {gi}i∈[n−1], called potential functions, such that for any x ∈ Ωn

µ(x) =

∏n−1
i=1 gi(xi, xi+1)∑

x′∈Ωn

∏n−1
i=1 gi(x

′
i, x
′
i+1)

.

This is a special case of the more general undirected graphical model (see Lauritzen
(1996)). For the sake of convenience, we will use the following notations.

Definition 7.3.2. Let µ be an undirected Markov chain with potential functions {gi}i∈[n−1].
We denote the maximal and minimal potentials as follows.

• Ri(µ) = maxa,b∈Ω gi(a, b),

• ri(µ) = mina,b∈Ω gi(a, b),

• R(µ) = maxi{Ri(µ)},

• r(µ) = mini{ri(µ)},

• R̄(µ) := R(µ)2−r(µ)2
R(µ)2+r(µ)2

.

When µ is clear from the context, we simply write Ri, ri, R, r, R̄ instead of Ri(µ), ri(µ),

R(µ), r(µ), R̄(µ).

In order to apply our techniques to the case where the underlying distribution is an
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undirected Markov chain, we need to bound the Gibbs-dependency of undirected Markov
chains. We first show the following lemma. (The proof of this lemma is deferred to a
later part of this section.)

Lemma 7.3.3. For every undirected Markov chain µ we have

ψ(µ) ≤ R̄ :=
R2 − r2

R2 + r2
.

That is, the above lemma bounds the Gibbs-dependency of undirected Markov chains
as a function of the potential functions. Combining this bound with Corollary 1.3.4, we
obtain the following result.

Corollary 7.3.4. There exists a computationally efficient mechanism for answering k
adaptively chosen queries with the following properties. When given n ≥ m = Õ

(√
k

α2 log 1
β

)
samples (an n-tuple) from an (unknown) undirected Markov chain µ, the mechanism guar-
antees

(
α + 2R̄(µ), β

)
-statistical-accuracy (w.r.t. the underlying distribution µ).

In particular, Corollary 7.3.4 shows that if the underlying chain µ satisfies R̄(µ) ≤ α,
then the dependencies in µ can be "accommodated for free", in the sense that we can
efficiently answer the same amount of adaptive queries as if the underlying distribution
is a product distribution. We are not aware of an alternative method for answering this
amount of adaptive queries under these conditions. As we next explain, we can broaden
the applicability of our techniques even further, by reducing dependencies in the data as
follows. The idea is to access only a part of the chain, obtained by "skipping" a fixed
number of elements between two random samples. Formally,

Definition 7.3.5 (Skipping Samples). Given a measure µ over n-tuples, and an inte-
ger t, we define the measure µ×t over n

t
-tuples as follows.1 To sample from µ×t, let

(x0, x1, x2, x3, . . . , xn−1) ∼ µ, and return (x0, xt, x2t, x3t, . . . , xn−t).

Intuitively, as Markov chains are "memoryless processes", skipping points in our sample
(as in Definition 7.3.5), should significantly reduce dependencies within the remaining
points. We formalize this intuition and prove the following theorem. (The proof of this
theorem is deferred to a later part of this section.)

Theorem 7.3.6. For every undirected Markov chain µ and for every t we have

ψ(µ×t) ≤ ψ(µ)t.

That is, Theorem 7.3.6 states that by reducing our sample size linearly with t, we could
reduce dependencies within our sample exponentially in t. Combining this bound with
Corollary 1.3.4, we obtain the following result.

1We assume here for simplicity that t divides n.
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Corollary 7.3.7. There exists a computationally efficient mechanism that is (3α, β)-
statistically-accurate for k adaptively chosen queries, given a sample (an n-tuple) drawn
from an underlying distribution µ×t, where µ is an undirected Markov-chain, and where

n ≥ Õ

(
log(1/β)

√
k

α2

)
and t ≥ log(1/α)

log(1/R̄)
.

Remark 7.3.8. As a baseline, one can choose the "skipping parameter" t to be sufficiently
big s.t. the Gibbs-dependency would drop below β/n. As we mentioned in Section 1.3,
in that case the dependencies in the data would be small enough to the extent we could
simply apply existing tools for answering queries w.r.t. product distributions, in order to
answer adaptive queries w.r.t. µ×t. However, this would require the skipping parameter t
to be as big as log(n/β)

log(1/R̄)
, i.e., to increase by (roughly) a log(n) factor, which in turn, would

result in a larger sample complexity.

We next prove Lemma 7.3.3 and Theorem 7.3.6.

Proof of Lemma 7.3.3. For any i ∈ [2, n− 1], 2 a ∈ Ω and u, v ∈ Ωn

µi(a | v−i) =
gi−1(vi−1, a)gi(a, vi+1)∑
a′ gi−1(vi−1, a

′)gi(a′, vi+1)

We will be using the following lemma of Kontorovich (2012):

Lemma 7.3.9. For n ∈ N and 0 ≤ r ≤ R, consider the vectors α ∈ [0,∞)n and
f, g ∈ [r, R]n. Then,

1

2

n∑
i=1

| αifi∑n
j=1 αjfj

− αigi∑n
j=1 αjgj

| ≤ R− r
R + r

.

We apply the lemma using

• fa = gi−1(vi−1, a)gi(a, vi+1)

• ha = gi−1(ui−1, a)gi(a, ui+1)

• αa = 1

and get that

1

2

∑
a

|µi(a | u−i)− µi(a | v−i)| ≤
Ri−1Ri − ri−1ri
Ri−1Ri + ri−1ri

.

2The case of i ∈ {1, n} has an almost identical argument; only the gi−1(vi−1, a) (respectively,
gn(a, vi+1)) factor is omitted. This does not affect the rest of the argument for the upper bound.
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It follows that

∥µi(·)− µi(· | v−i)∥TV

=
1

2

∑
a

|µi(a)− µi(a | v−i)|

=
1

2

∑
a

|
∑
u−i

µi(a | u−i)µ−i(u−i)− µi(a | v−i)|

=
1

2

∑
a

∣∣∣∣∣∑
u−i

µi(a | u−i)µ−i(u−i)

−
∑
u−i

µ−i(u−i)µi(a | v−i)

∣∣∣∣∣
=
1

2

∑
a

|
∑
u−i

µ−i(u−i)
[
µi(a | u−i)− µi(a | v−i)

]
|

≤1

2

∑
a

∑
u−i

µ−i(u−i)|µi(a | u−i)− µi(a | v−i)|

=
∑
u−i

µ−i(u−i)
1

2

∑
a

|µi(a | u−i)− µi(a | v−i)|

≤
∑
u−i

µ−i(u−i)
Ri−1Ri − ri−1ri
Ri−1Ri + ri−1ri

=
Ri−1Ri − ri−1ri
Ri−1Ri + ri−1ri

.

Finally,

ψ(µ) = sup
v

E
i

∥∥µi(·)− µi(· | v−i)∥∥TV

≤ R2 − r2

R2 + r2
.

In order to prove Theorem 7.3.6, we first establish the following notations:

• xi±t = xi−1, xi+t

• cti := sup
xi±t,yi±t

∥µi±(t−1)(· | xi±t)

−µi±(t−1)(· | yi±t)∥TV

• γti := sup
xi±t,yi±t

∥µi(· | xi±t)− µi(· | yi±t)∥TV

Note that
c1i = γi+1

i = sup
xi±1,yi±1

∥µi(· | xi±1)− µi(· | yi±1)∥TV .

We will be using the following two lemmas (we prove these two lemmas after the proof
of Theorem 7.3.6).
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Lemma 7.3.10. γti ≤
∏t

j=1 c
j
i

Lemma 7.3.11. For every t and every i, there exist some j s.t. cti ≤ c1j .

We now prove Theorem 7.3.6 using Lemmas 7.3.10 and 7.3.11.

Proof of Theorem 7.3.6. Combining Lemma 7.3.10 and Lemma 7.3.11 yields that for ev-
ery undirected Markov measure µ and for every t,

max
i
γti ≤ max

i

t∏
j=1

cji ≤ max
i

t∏
j=1

c1l(j)

≤ max
i

max
l

(c1l )
t = (max

i
c1l )

t = (ψ(µ))t, (7.3)

where the first inequality is due to Lemma 7.3.10, the second is by Lemma 7.3.11 3. The
Last equality holds by the definitions of ψ and c1l . Since

µi(·) =
∑

xi±t∈Ω2

µi(· | xi±t)µi±t(xi±t),

we have, by the undirected Markov property,

ψ(µ×t) = max
i

sup
yi±t

∥µi(·)− µi(· | yi±t)∥TV

= max
i

sup
yi±t

∥
∑

xi±t∈Ω2

(µi(· | xi±t)− µi(· | yi±t))µ(xi±t)∥TV

≤ max
i

sup
yi±t

∑
xi±t∈Ω2

∥µi(· | xi±t)− µi(· | yi±t)∥TV µ(xi±t)

≤ max
i
γti ≤ (ψ(µ))t,

where the last inequality is due to (7.3).

Proof of Lemma 7.3.10. Let xi±t, yi±t be some pairs of realization for the i−t, i+t variable
in the chain. By the law of total probability,

∥µi(· | xi±t)− µi(· | yi±t)∥TV

= ∥
∑

xi±(t−1)

µi(· | xi±(t−1))µi±(t−1)(xi±(t−1) | xi±t)

−
∑

yi±(t−1)

µi(· | yi±(t−1))µi±(t−1)(yi±(t−1) | yi±t)∥TV. (7.4)

Define a coupling measure Πi±(t−1)(·, · | xi±t, yi±t) whose marginals are µi±(t−1)(· | xi±t)
3The function l : [n] → [n] returns for every coordinate i the appropriate coordinate l(i) which is

guaranteed by Lemma 7.3.11 to bound it.
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and µi±(t−1)(· | yi±t). Then

(7.4) =

∥
∑

xi±(t−1)

∑
yi±(t−1)

(µi(· | xi±(t−1))− µi(· | yi±(t−1)))

Πi±(t−1)(xi±(t−1), yi±(t−1) | xi±t, yi±t)∥TV

≤
∑

xi±(t−1)

∑
yi±(t−1)

∥∥µi(· | xi±(t−1))− µi(· | yi±(t−1))∥∥TV

Πi±(t−1)(xi±(t−1), yi±(t−1) | xi±t, yi±t)

≤ γt−1i

∑
xi±(t−1)

∑
yi±(t−1)

1xi±(t−1) ̸=yi±(t−1)

Πi±(t−1)(xi±(t−1), yi±(t−1) | xi±t, yi±t).

By the dual form of the total variation distance,4 we can choose Πi±(t−1) to be such that

∥∥µi±(t−1)(· | xi±t)− µi±(t−1)(· | yi±t)∥∥TV

=
∑

xi±(t−1)

∑
yi±(t−1)

1xi±(t−1) ̸=yi±(t−1)

Πi±(t−1)(xi±(t−1), yi±(t−1) | xi±t, yi±t)

and therefore

∥µi(· | xi±t)− µi(· | yi±t)∥TV

≤ γt−1i

∥∥µi±(t−1)(· | xi±t)− µi±(t−1)(· | yi±t)∥∥TV

≤ γt−1i cti.

Hence we get that

γti = sup
xi±t,yi±t

∥µi(· | xi±t)− µi(· | yi±t)∥TV ≤ γt−1i cti

and by induction we get the lemma’s result.

Proof of Lemma 7.3.11. First we will show that for any j, k the following holds

sup ∥µj(· | xj−1, xj+k)− µj(· | yj−1, yj+k)∥TV

≤ sup ∥µj(· | xj−1, xj+k−1)− µj(· | yj−1, yj+k−1)∥TV
. (7.5)

4By the Kantorovich-Rubinstein duality of the specific case of total-Variation distance ∥P −Q∥TV =
minΠ∈∆(P,Q)

∫
Ω

∫
Ω
1x ̸=ydΠ(x, y) when ∆(P,Q) is the set of all the possible coupling of P and Q.
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Indeed,

sup ∥µj(· | xj−1, xj+k)− µj(· | yj−1, yj+k)∥TV

= sup ∥
∑
xj+k−1

µj(· | xj−1, xj+k−1)µj+k−1(xj+k−1 | xj+k)

−
∑
yj+k−1

µj(· | yj−1, yj+k−1)µj+k−1(yj+k−1 | yj+k)∥TV.

Let Πj+k−1(·, · | xj+k, yj+k) be a coupling distribution whose marginal distributions are
µj+k−1(yj+k−1 | yj+k) and µj+k−1(xj+k−1 | xj+k), we get that the above is equal to

sup ∥
∑
xj+k−1

∑
yj+k−1

(µj(· | xj−1, xj+k−1)

− µj(· | yj−1, yj+k−1))

Πj+k−1(xj+k−1, yj+k−1 | xj+k, yj+k)∥TV

≤ sup
∑

xj+k−1

∑
yj+k−1

∥µj(· | xj−1, xj+k−1)

− µj(· | yj−1, yj+k−1)∥TV

Πj+k−1(xj+k−1, yj+k−1 | xj+k, yj+k)

≤ sup ∥µj(· | xj−1, xj+k−1)− µj(· | yj−1, yj+k−1)∥TV.

Now we turn to the quantity of interest:

sup
xi±t,yi±t

∥∥µi±(t−1)(· | xi±t)− µi±(t−1)(· | yi±t)∥∥TV

= sup
xi±t,yi±t

∥
∑
xi+t−1

µi±(t−1)(· | xi±t, xi+t−1)

µi+t−1(xi+t−1 | xi±t)

−
∑
yi+t−1

µi±(t−1)(· | yi±t, yi+t−1)

µi+t−1(yi+t−1 | yi±t)∥TV

= sup
xi±t,yi±t

∥
∑
xi+t−1

µi−t+1(· | xi−t, xi+t−1)

µi+t−1(xi+t−1 | xi±t)

−
∑
yi+t−1

µi−t+1(· | yi−t, yi+t−1)

µi+t−1(yi+t−1 | yi±t)∥TV. (7.6)

Let Πi+t−1(·, · | xi±t), yi±t) be a coupling distribution whose marginals are µi+t−1(xi+t−1 |
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xi±t) and µi+t−1(yi+t−1 | yi±t). Then the above is then equal to

(7.6) = supxi±t,yi±t
∥
∑
xi+t−1

∑
yi+t−1

µi−t+1(· | xi−t, xi+t−1)

− µi−t+1(· | yi−t, yi+t−1)

Πi+t−1(xi+t−1, yi+t−1 | xi±t, yi±t)∥TV

≤ supxi±t,yi±t

∑
xi+t−1

∑
yi+t−1

∥µi−t+1(· | xi−t, xi+t−1)

− µi−t+1(· | yi−t, yi+t−1)∥TV

Πi+t−1(xi+t−1, yi+t−1 | xi±t, yi±t).

Plugging j = i− t+ 1 and k = t− 2 into (7.5) yields

sup
xi±t,yi±t

∥∥µi±(t−1)(· | xi±t)− µi±(t−1)(· | yi±t)∥∥TV

≤ sup
xi−t,i−t+2,yi−t,i−t+2

∥µi−t+1(· | xi−t,i−t+2)

− µi−t+1(· | yi−t,i−t+2)∥TV

which completes the proof.

7.4 Additional proofs

7.4.1 Product measure

We show the following claim

Claim 7.4.1. For a measure µ ∼ X n, if for every i ∈ [n] and for every possible x ∈ X n

it holds that µi = µi(· | x−i, then µ is a product measure.

Proof. For convenience, we denote for every i ≤ j the following notation ai:j = ai, . . . , aj.
Now, for every a ∈ X n, µ(a) =

∏
i∈[n] µ(ai | a1:i−1. For start, we show that µ(a2 | a1) =

µ(a2). Indeed,

µ(a2 | a1) =
∑

a3,...,an

µ(a2 | a1, a3:n) · µ(a3:n | a1)

=
∑

a3,...,an

µ(a2) · µ(a3:n | a1) = µ(a2)

In the same way it can be shown that µ(a3) = µ(a3 | a1:2) and so on.
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Algorithm 11 Auxiliary Algorithm A′

Input: S⃗ = (S1, . . . , ST ), where T = ε
δ
.

F ← ∅
for t ∈ [T ] do

(ht1, . . . , h
t
k)← A(St)

Ht ← {(ht1, t), . . . , (htk, t)}
H̄t ← {1− h | h ∈ Ht}
F ← F ∪Ht ∪ H̄t

Sample (h∗, t∗) from F using the exponential mechanism. Specifically, sample (h∗, t∗) ∈
F with probability proportional to exp

(
εn
2
(h∗(St∗)− h∗(µ))

)
.

Return (h∗, t∗)

7.4.2 Proofs from Section 7.1

Proof of Theorem 7.1.2. Fix a measure µ on X n with Gibbs-dependence ψn, and fix an
(ε, δ)-differentially private algorithm that takes a sample S ∈ X n and returns k predicates
h1, . . . , hk : X → {0, 1}. Assume towards contradiction that

Pr
S,A(S)

[
max
i∈[k]
|hi(µ)− hi(S)| ≥ 10ε+ 2ψ

]
≥ δ

ε
. (7.7)

Consider the procedure described in Algorithm 11. As differential private algorithms
are immune to post-processing and by the composition theorem, A′ is by itself (2ε, δ)-
differentially private. Given a multi-set S⃗ sampled from µT , by (7.7) we get that

∀t : Pr
St,A(St)

[
max
i∈[k]
|hti(µ)− hti(St)| ≥ 10ε+ 2ψ

]
≥ δ

ε
,

and hence, by setting T = ε
δ
, we have that

Pr
S⃗,A′(S⃗)

[
max

t∈[T ],i∈[k]
|hti(µ)− hti(St)| ≥ 10ε+ 2ψ

]
≥ 1−

(
1− δ

ε

)T
≥ 1

2
.

By Markov’s inequality,

E
S⃗,A′(S⃗)

[
max

t∈[T ],i∈[k]
|hti(µ)− hti(St)|

]
≥ 5ε+ ψ.

Now the set constructed in the algorithm’s run, F , contains also the negation of each
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predicate, and hence

E
S⃗,A′(S⃗)

[
max
(h,t)∈F

{
h(St)− h(µ)

}]
= E

S⃗,A′(S⃗)

[
max

t∈[T ],i∈[k]
|hti(µ)− hti(St)|

]
≥ 5ε+ ψ.

By the properties of the exponential mechanism (see McSherry and Talwar (2007) or
Bassily et al. (2016)), denoting the output of the algorithm by (h∗, t∗) we get that

E
(h∗,t∗)

[h∗(St∗)− h∗(µ)]

≥ max
(h,t)∈F

{h∗(St∗)− h∗(µ)} −
2

εn
log(2Tk).

Taking expectation on both sides yields

E
S⃗,A′(S⃗)

[h∗(St∗)− h∗(µ)]

≥ E
S⃗,A′(S⃗)

[
max
(h,t)∈F

{h∗(St∗)− h∗(µ)}
]
− 2

εn
log(2Tk)

≥ 5ε+ ψ − 2

εn
log(2kε/δ).

For n ≥ log(2kε/δ)
ε2

, this is at least 2ε+ ψ which contradicts Lemma 7.1.1.



Chapter 8

Conclusion

In this thesis, we have delved into the intricate interplay between theoretical machine
learning, differential privacy, and compression. Throughout our investigation, we have
explored the conceptual and quantitative connections between these three domains, of-
fering novel insights and solutions to fundamental challenges in the realm of data-driven
problems. Our exploration has led us to uncover new perspectives on privacy-preserving
algorithms, compression schemes, and the symbiotic relationship between learning and
compression.

8.1 Summary of Contributions

Our research has spanned across multiple aspects, with each component contributing
to our broader understanding of the intricate connections between differential privacy,
compression, and machine learning.

We initiated our inquiry by examining the intertwinement of machine learning and com-
pression, seeking to understand the qualitative and quantitative connections between
these domains. Our work illuminated the equivalence between learning and compression
in certain settings, providing another bridge between the realms of compression schemes
and algorithmic learning. We extended this relationship to encompass regression prob-
lems, presenting a pioneering compressed regression result that uses minimal sample size
while maintaining efficient running-time. This foundational contribution lays the ground-
work for future developments in efficient, information-preserving data analysis.

Diving into the realm of privacy, we addressed the fundamental question of how much
data is necessary to learn while ensuring privacy remains uncompromised. We tackled
the problem of privately learning axis-aligned rectangles, a case which serves as a basic
building block for a range of complex algorithms. The concept of sample complexity
emerged as a pivotal point of investigation. Through innovative algorithmic design, we
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achieved an almost optimal trade-off, minimizing sample complexity. This achievement
not only offers practical benefits in privacy-aware learning but also contributes to the
broader discourse on the balance between learning efficiency and privacy guarantees.

Our exploration further led us to challenge the traditional definition of learning, advo-
cating for a more flexible paradigm termed "Universal Learning." By questioning the
pessimistic worst-case assumptions, we provided insights into aligning theoretical models
with real-world data properties. This departure from the conventional approach bears the
potential to bridge the gap between theoretical and practical aspects of machine learning,
particularly under privacy constraints.

In the realm of adaptive data analysis, we navigated the complex landscape of inquiries
emerging from evolving data accumulation processes. Bridging ideas from privacy and
compression, we tackled the challenge of extending adaptive tools to encompass cor-
related examples. Our results showcased the feasibility of adapting privacy-based and
compression-based algorithms to these intricate scenarios, thereby expanding the toolbox
for reliable data analysis in adaptive settings.

8.2 Implications and Future Research

The contributions of this thesis pave the way for several exciting avenues of future re-
search.

Firstly, the relationship between learning and compression, while extensively explored,
still harbors uncharted territories. Investigating the precise limits of this connection
is a fundamental problem which aligns with some long standing problems in the field.
Namely, finding the optimal compression size for regression problems extends the known
open question regarding the possibility of linear relation between compression size and the
sample complexity of learning. One possible path might include extending and analyzing
some specific well-studies classes such as Maximal Classes and Duddly Classes.

The exploration of sample complexity within a privacy-preserving context remains a
fertile ground for further investigation. Investigating the trade-offs between privacy re-
quirements and learning efficiency across a wider array of learning tasks could lead to
more comprehensive and nuanced results, enabling practitioners to strike a fine balance
between utility and privacy. On the particular scope of this thesis, a recent work emerged
to definitively address the challenge of privately learning axis-aligned rectangles. This
work introduced an optimal algorithm for the problem, culminating in a comprehensive
solution that builds upon the foundation laid by our exploration.

The proposition of Universal Learning as a more flexible paradigm has significant im-
plications for bridging the gap between theory and practice. Extending this approach
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to various machine learning paradigms and addressing its applicability in real-world sce-
narios could contribute to the development of more adaptive and resilient learning algo-
rithms. Moreover, quantifying the precise sample complexity for fundamental problems
and algorithms under this framework could provide a more nuanced understanding of the
trade-offs between privacy and learning efficiency.

Lastly, adaptive data analysis, as one of the novel challenges posed in this thesis, holds
untapped potential for future exploration. Investigating more complex adaptive scenarios
and devising mechanisms to integrate privacy and compression in such settings can fos-
ter the development of robust and practical data analysis tools. Concurrently with our
theoretical research, a paramount objective is the creation of effective algorithmic im-
plementations in the realm of adaptive data analysis. Such implementations are pivotal
in rendering these algorithms accessible to researchers and statisticians. Their availabil-
ity could serve to minimize errors resulting from the improper utilization of conventional
tools, and may help research areas where collecting information is a difficult and expensive
job.

8.3 Closing Remarks

In conclusion, this thesis has embarked on a journey through the intricate landscapes
of theoretical machine learning, differential privacy, and compression. We have explored
the interplay between these domains, unraveling novel connections, and proposing inno-
vative solutions to various challenges. As data-driven technologies continue to evolve,
the insights gained from this research join a broad and cumulative effort to continue
the development of efficient, privacy-preserving algorithms and drive the advancement
of machine learning theory and practice. I am grateful for the privilege of being part of
this research community that propels our understanding and knowledge towards a more
secure, efficient, and ethical data-driven future.
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