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 תקציר

 

כפי שהוא מתואר בספרות הלמידה, את הקשר שלו לתחום ובפרט  ,התמקדתי במושג ה"דחיסה" זהבמחקר 

 בהקשר של בעיות רגרסיה.

  –הדבר נעשה בשני מישורים 

(. לאחר 2016המתואר במאמרם של מורן ויהודייוף )הכיוון הראשון החל בגרסה יעילה של אלגוריתם הדחיסה 

וכך השגנו אלגוריתם דחיסה גנרי עבור המקרים הללו  ,מכן הרחבנו גישה זו מבעיות סיווג אל בעיות רגרסיה

שגודל הדחיסה המתקבלת בו הינה בעלת גודל חסום. הדבר נעשה בעזרת רדוקציה ללומד גנרי עבור המחלקות 

המבטיחה שחזור  ,זוהי הבניה הגנרית הראשונה  )ללא קשר ליעילות או גודל הדחיסה( ככל הידוע לנו המדוברות.

 עם קירוב אחיד.

מוחלש. תהליך זה הינו בעל חשיבות בפני עצמו, -רגרסיה-תחנו תהליך גנרי ליצירת לומדיבמסגרת בניה זו פ

 (.1997סימון )וצגה על ידי תוצאה זו שופכת אור על בעיה פתוחה שה ,מעבר לשימוש שנעשה בו במסגרת זו. בפרט

בנוסף אנו מדגימים את השימוש באלגוריתם עבור שתי בעיות רגרסיה: למידה של פונקציות ליפשיץ ופונקציות 

 עם השתנות חסומה.

הכיוון השני נובע לדחיסה אגנוסטית. במסגרת זו אנו מספקים את התוצאה החיובית הראשונה עבור דחיסה 

𝑝אנו מראים שעבור אגנוסטית בעלת גודל חסום.  ∈ קיימת לרגרסיה לינארית אגנוסטית אלגוריתם     {∞,1}

 דחיסה מגודל חסום שתלוי רק במימד המרחב )תלות לינארית(.

1)אחרת  ℓ𝑝שגיאה    בניגוד לתוצאה זו אנו מראים כי לכל < 𝑝 < לא קיים אלגוריתם דחיסה מגודל    (∞

 חסום )שגודלו לא תלוי בגודל המדגם(.

 ℓ2ההיתכנות של דויד ושות' עבור -עדנת ומכלילה את תוצאת איתוצאה זו מ

 





Abstract

In my research we focued on the notion of Compression-Scheme and its relation

to Learning Theory and in particular to the problem of regression. This was

done in two directions -

The first one was to give an algorithmically efficient version of the learner-

to-compression scheme conversion in Moran and Yehudayoff (2016). We further

extend this technique to real-valued hypotheses, to obtain a bounded-size sample

compression scheme via an efficient reduction to a certain generic real-valued

learning strategy. To our knowledge, this is the first general compressed re-

gression result (regardless of efficiency or boundedness) guaranteeing uniform

approximate reconstruction. Along the way, we develop a generic procedure for

constructing weak real-valued learners out of abstract regressors; this result is

also of independent interest. In particular, this result sheds new light on an open

question of H. Simon (1997). We show applications to two regression problems:

learning Lipschitz and bounded-variation functions.

The second direction is the Agnostic-Compression setting. We obtain the

first positive results for bounded sample compression in this setting. We show

that for p ∈ {1,∞}, agnostic linear regression admits a bounded sample com-

pression scheme. Specifically, we exhibit efficient sample compression schemes

for agnostic linear regression in Rd of size d+ 1 under the `1 loss and size d+ 2

under the `∞ loss. We further show that for every other `p loss (1 < p < ∞),

there does not exist an agnostic compression scheme of bounded size. This

refines and generalizes a negative result of David et al. [2016] for the `2 loss.

i
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Chapter 1

Introduction

We may assume the superiority

ceteris paribus of the

demonstration which derives from

fewer postulates or hypotheses

Aristotle, Posterior Analytics

The study of Machine Learning Theory has been for three decades a growing

field both in the statistical and in the algorithmic research areas. Learning al-

gorithms are used this days on a wide range of topics, from image-segmentation

and natural-language processing to data-science and bioinformatics. Since the

beginning, several notions of learning were proposed, trying to capture the char-

acteristics of learnable problems. Two of the most important and dominant no-

tions are the VC-Dimension by Vapnik and Chervonenkis and the PAC learning

by Valiant.

The problem of compressing data dates back to the beginning of the field

of coding-theory and information-theory by Shannon. As more and more novel

learning algorithms had been designed, one of the common aspects that where

noted is that at the core of some of them lays some kind of compression, the

principle of finding “representative” subsets of the data. as part of a more

general Occam learning paradigm. Most notable is the SVM algorithm, which

derives its name from the set of supporting vectors which uniquely defines the

linear separator returned by the algorithm.

Following this path, Littlestone and Warmuth established a formal frame-

work for discussion of compression scheme from the learning point of view. In

1
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addition they showed that for the case of binary-labeled classes - compression

implies learnability 1.

A fundamental question, posed by Littlestone and Warmuth [1986] on the

same paper, concerns the reverse implication: Can every learner be converted

into a sample compression scheme? Or, in a more quantitative formulation:

Does every VC class admit a constant-size sample compression scheme? A series

of partial results [Floyd, 1989, Helmbold et al., 1992, Floyd and Warmuth, 1995,

Ben-David and Litman, 1998, Kuzmin and Warmuth, 2007, Rubinstein et al.,

2009, Rubinstein and Rubinstein, 2012, Chernikov and Simon, 2013, Livni and

Simon, 2013, Moran et al., 2017] culminated in Moran and Yehudayoff [2016]

which resolved the latter question2.

The usefulness of this link is that while learning is a statistical notion, com-

pression is a combinatorial one. Thus by linking the two, by such an equivalence,

can help moving questions about learning to the combinatorial world, open the

research to other directions and to a wide range of tools previously not relevant

to this area.

Moran and Yehudayoff’s solution involved a clever use of von Neumann’s

minimax theorem, which allows one to make the leap from the existence of a

weak learner uniformly over all distributions on examples to the existence of a

distribution on weak hypotheses under which they achieve a certain performance

simultaneously over all of the examples. Although their paper can be understood

without any knowledge of boosting, Moran and Yehudayoff note the well-known

connection between boosting and compression. Indeed, boosting may be used

to obtain a constructive proof of the minimax theorem [Freund and Schapire,

1996, 1999] and [Floyd and Warmuth, 1995, Section 9.1] — and this connection

was what motivated us to seek an efficient algorithm implementing Moran and

Yehudayoff’s existence proof. Having obtained an efficient conversion procedure

from consistent PAC learners to bounded-size sample compression schemes, we

turned our attention to the case of real-valued hypotheses, a case which had

almost no results on this area. It turned out that a virtually identical boosting

framework could be made to work for this case as well, although a novel analysis

was required.

1Lately there a growing study on the properties and the generalization bounds of
compressing-based learning algorithms, see for example Gottlieb et al. [2017c]Graepel et al.
[2005]Cummings et al. [2016].

2 The refined conjecture of Littlestone and Warmuth [1986], that any concept class with
VC-dimension d admits a compression scheme of size O(d), remains open.
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Our second path of investigation is focused on the notion of agnostic-

compression scheme. In a recent paper, David, Moran, and Yehudayoff [2016]

generalized the definition of compression scheme to the agnostic case, where

it is required that the function reconstructed from the compression set obtains

an average loss on the full data set nearly as small as the function in the class

that minimizes this quantity. Below, we give a strong motivation for this crite-

rion by arguing an equivalence to the generalization ability of the compression-

based learning algorithm. Under this definition, David et al. [2016] extended

the realizable-case result for VC classes to cover the agnostic case as well: a

bounded-size compression scheme for the former implies such a scheme (in fact,

of the same size) for the latter. They also generalized from binary to multiclass

concept families, with the graph dimension in place of VC-dim. Proceeding to

real-valued function classes, David et al. came to a starkly negative conclusion:

they established that there is no constant-size agnostic sample compression

scheme for linear functions under the `2 loss. (Realizable linear regression in Rd

trivially admits sample compression of size d+ 1, under any loss, by selecting a

minimal subset that spans the data.)

Those results led us to try and find a more precise characterization of the

loss functions which can be agnostic-compressed effectively. As a first step we

turned our attention to the `p-losses. We extend the impossibility results of

David et al. to the `p-losses for p ∈ (1,∞), and on the other hand construct an

efficient agnostic-compression scheme for `1 and `∞ losses, which is independent

on the sample size. Resulting is an interesting separation between those two

cases and the rest of the `p family, which offers a hint towards characterizing

the loss functions amenable to compression.

1.1 Definitions and notation

We will write [k] := {1, . . . , k}. An instance space is an abstract set X . For a

concept class C ⊂ {0, 1}X , if say that C shatters a set {x1, . . . , xk} ⊂ X if

C(S) = {(f(x1), f(x2), . . . , f(xk)) : f ∈ C} = {0, 1}k .

The VC-dimension d = dC of C is the size of the largest shattered set (or ∞
if C shatters sets of arbitrary size) [Vapnik and Červonenkis, 1971]. When

the roles of X and C are exchanged — that is, an x ∈ X acts on f ∈ C via

x(f) = f(x), — we refer to X = C∗ as the dual class of C. Its VC-dimension is
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then d∗ = d∗C := dC∗ , and referred to as the dual VC dimension. Assouad [1983]

showed that d∗ ≤ 2d+1.

For F ⊂ RX and t > 0, For F ⊂ RX and t > 0, we say that F t-shatters a

set {x1, . . . , xk} ⊂ X if there is an r ∈ Rm such that for all y ∈ {−1, 1}m there

is an f ∈ F such that mini∈[k] yi(f(xi)−ri) ≥ t. The t-fat-shattering dimension

d(t) = dF (t) is the size of the largest t-shattered set (possibly ∞) [Alon et al.,

1997]. Again, the roles of X and F may be switched, in which case X = F∗

becomes the dual class of F . Its t-fat-shattering dimension is then d∗(t), and

Assouad’s argument shows that d∗(t) ≤ 2d(t)+1.

A sample compression scheme (κ, ρ) for a hypothesis class F ⊂ YX is defined

as follows. A k-compression function κmaps sequences ((x1, y1), . . . , (xm, ym)) ∈⋃
`≥1(X × Y)` to elements in K =

⋃
`≤k′(X × Y)` ×

⋃
`≤k′′ {0, 1}

`
, where

k′ + k′′ ≤ k. A reconstruction is a function ρ : K → YX . We say that (κ, ρ)

is a k-size sample compression scheme for F if κ is a k-compression and for

all h∗ ∈ F and all S = ((x1, h
∗(x1)), . . . , (xm, h

∗(ym))), we have ĥ := ρ(κ(S))

satisfies ĥ(xi) = h∗(xi) for all i ∈ [m].

For real-valued functions, there are several notions of compression-schemes.

We say it is a uniformly ε-approximate compression scheme if

max
1≤i≤m

|ĥ(xi)− h∗(xi)| ≤ ε.

Note that David et al. [2016] proposed the following definitions:

Let S = (x1, yi), . . . , (xm, ym) be a tagged sample drawn i.i.d from some un-

known distribution, an let l : X × R → R be some loss function. We say that

(κ, ρ) is an agnostic sample compression scheme for H if, for every sample S,

fS := ρ(κ(S)), achieves F-competitive empirical loss:

1

m

m∑
i=1

l(fS(xi), yi) ≤ inf
h∈H

1

m

m∑
i=1

l(fS(xi), yi),

and we say that it is ε-Approximate Agnostic Sample Compression Scheme

for H if for every sample S

1

m

m∑
i=1

l(fS(xi), yi) ≤ inf
h∈H

1

m

m∑
i=1

l(fS(xi), yi) + ε.
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1.2 Main results

Throughout the paper, we implicitly assume that all hypothesis classes are ad-

missible in the sense of satisfying mild measure-theoretic conditions, such as

those specified in Dudley [1984, Section 10.3.1] or Pollard [1984, Appendix C].

We begin with an algorithmically efficient version of the learner-to-compression

scheme conversion in Moran and Yehudayoff [2016]:

Theorem 1.1 (Efficient compression for classification). Let C be a concept class

over some instance space X with VC-dimension d, dual VC-dimension d∗, and

suppose that A is a (proper, consistent) PAC-learner for C: For all 0 < ε, δ <

1/2, all f∗ ∈ C, and all distributions D over X , if A receives m ≥ mC(ε, δ)

points S = {xi} drawn iid from D and labeled with yi = f∗(xi), then A outputs

an f̂ ∈ C such that

PS∼Dm
(
PX∼D

(
f̂(X) 6= f∗(X) |S

)
> ε
)
< δ.

For every such A, there is a randomized sample compression scheme for C of

size O(k log k), where k = O(dd∗). Furthermore, on a sample of any size m,

the compression set may be computed in expected time

O ((m+ TA(cd)) logm+mTE(cd)(d∗ + logm)) ,

where TA(`) is the runtime of A to compute f̂ on a sample of size `, TE(`) is the

runtime required to evaluate f̂ on a single x ∈ X , and c is a universal constant.

Although for our purposes the existence of a distribution-free sample com-

plexity mC is more important than its concrete form, we may take mC(ε, δ) =

O(dε log 1
ε+ 1

ε log 1
δ ) [Vapnik and Chervonenkis, 1974, Blumer et al., 1989], known

to bound the sample complexity of empirical risk minimization; indeed, this

loses no generality, as there is a well-known efficient reduction from empirical

risk minimization to any proper learner having a polynomial sample complex-

ity [Pitt and Valiant, 1988, Haussler et al., 1991]. We allow the evaluation

time of f̂ to depend on the size of the training sample in order to account for

non-parametric learners, such as nearest-neighbor classifiers. A naive imple-

mentation of the Moran and Yehudayoff [2016] existence proof yields a runtime

of order mcdTA(c′d) + mcd∗ (for some universal constants c, c′), which can be

doubly exponential when d∗ = 2d; this is without taking into account the cost

of computing the minimax distribution on the mcd ×m game matrix.
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Next, we extend the result in Theorem 1.1 from classification to regression:

Theorem 1.2 (Efficient compression for regression). Let F ⊂ [0, 1]X be a func-

tion class with t-fat-shattering dimension d(t), dual t-fat-shattering dimension

d∗(t), and suppose that A is an ERM (i.e., proper, almost consistent) learner

for F : For all f∗ ∈ C, and all distributions D over X , if A receives m points

S = {xi} drawn iid from D and labeled with yi = f∗(xi), then A outputs

an f̂ ∈ F such that maxi∈[m]|f̂(xi) − f∗(xi)| ≤ αη for α ∈ [0, 1)]. For ev-

ery such A, there is a randomized uniformly ε-approximate sample compres-

sion scheme for F of size O(km̃ log(km̃)), where m̃ = O(d(cε) log(1/ε)) and

k = O(d∗(cε) log(d∗(cε)/ε)). Furthermore, on a sample of any size m, the com-

pression set may be computed in expected time

O(mTE(m̃)(k + logm) + TA(m̃) log(m)),

where TA(`) is the runtime of A to compute f̂ on a sample of size `, TE(`) is the

runtime required to evaluate f̂ on a single x ∈ X , and c is a universal constant.

A key component in the above result is our construction of a generic (η, γ)-

weak learner.

Definition 1.1. For η ∈ [0, 1] and γ ∈ [0, 1/2], we say that f : X → R is an an

(η, γ)-weak hypothesis (with respect to distribution D and target f∗ ∈ F) if

PX∼D(|f(X)− f∗(X)| > η) ≤ 1

2
− γ.

Theorem 1.3 (Generic weak learner). Let F ⊂ [0, 1]X be a function class

with t-fat-shattering dimension d(t). For some universal numerical constants

c1, c2, c3 ∈ (0,∞), for any η, δ ∈ (0, 1) and γ ∈ (0, 1/4), any f∗ ∈ F , and any

distribution D, letting X1, . . . , Xm be drawn iid from D, where

m =

⌈
c1

(
d(c2η) ln

(
c3
η

)
+ ln

(
1

δ

))⌉
,

with probability at least 1− δ, every f ∈ F with maxi∈[m] |f(Xi)− f∗(Xi)| ≤ αη
for α ∈ [0, 1), is an (η, γ)-weak hypothesis with respect to D and f∗.

As one can see, our results allow us to use any hypothesis f ∈ F with

maxi∈[m] |f(Xi)− f∗(Xi)| bounded below η: for instance, bounded by η/2.

Following this we give applications to sample compression for nearest-neighbor
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and bounded-variation regression. In order to provide those applications we had

to provide upper-bounds on the dual-t-shattering dimension for both cases.

For the agnostic-compression scheme setting - the negative result of David

et al. [2016] raises a general doubt over whether sample compression is ever a

viable approach to agnostic learning of real-valued functions. In this work, we

address this concern by proving that

Theorem 1.4. There exists an efficiently computable compression scheme for

agnostic linear regression in Rd under the `1 loss of size d+ 1.

The upshot is that if we replace the `2 loss with the `1 loss, then there is

a simple agnostic compression scheme of size d + 1 for linear regression in Rd.
This is somewhat surprising, given the above negative result for the `2 loss. We

also prove a similar result can be done under the `∞ loss.

Theorem 1.5. There exists an efficiently computable compression scheme for

agnostic linear regression in Rd under the `∞ loss of size d+ 2.

This construction is somewhat different then the `1 case. However, interest-

ingly, we also generalize the argument of David et al. [2016] to show that these

are the only two `p losses (1 ≤ p ≤ ∞) for which there exists a constant-size

compression scheme. Specifically we prove that

Theorem 1.6. There is no agnostic sample compression scheme for zero-

dimensional linear regression under `p loss, 1 < p < ∞, with size k(m) <

log(m).

Computationally, our compression schemes for `1 and `∞ amount to solving

a polynomial (in fact, linear) size linear program. These appear to be the

first positive results for bounded agnostic sample compression for real-valued

function classes.

1.3 Related work

It appears that generalization bounds based on sample compression were in-

dependently discovered by Littlestone and Warmuth [1986] and Devroye et al.

[1996] and further elaborated upon by Graepel et al. [2005]; see Floyd and War-

muth [1995] for background and discussion. A more general kind of Occam learn-

ing was discussed in Blumer et al. [1989]. Computational lower bounds on sam-

ple compression were obtained in Gottlieb et al. [2014], and some communication-

based lower bounds were given in Kane et al. [2017].
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Beginning with Freund and Schapire [1997]’s AdaBoost.R algorithm, there

have been numerous attempts to extend AdaBoost to the real-valued case

[Bertoni et al., 1997, Drucker, 1997, Avnimelech and Intrator, 1999, Karak-

oulas and Shawe-Taylor, 2000, Duffy and Helmbold, 2002, Kégl, 2003, Nock and

Nielsen, 2007] along with various theoretical and heuristic constructions of par-

ticular weak regressors [Mason et al., 1999, Friedman, 2001, Mannor and Meir,

2002]; see also the survey Mendes-Moreira et al. [2012].

An explanation for the challenge of defining a good weak-learner was given

by Duffy and Helmbold [2002, Remark 2.1] we discuss this issue on 2.2.1. The

(η, γ)-weak learner, which has appeared, among other works, in Anthony et al.

[1996], Simon [1997], Avnimelech and Intrator [1999], Kégl [2003], gets around

this difficulty — but provable general constructions of such learners have been

lacking. Likewise, the heart of our sample compression engine, MedBoost, has

been widely in use since Freund and Schapire [1997] in various guises. Our

Theorem 1.3 supplies the remaining piece of the puzzle: any sample-(almost-

))consistent regressor applied to some random sample of bounded size yields an

(η, γ)-weak hypothesis. The closest analogue we were able to find was Anthony

et al. [1996, Theorem 3], which is non-trivial only for function classes with finite

pseudo-dimension, and is inapplicable, e.g., to classes of 1-Lipschitz or bounded

variation functions (see 3.3).

The literature on general sample compression schemes for real-valued func-

tions is quite sparse. There are well-known narrowly tailored results on spec-

ifying functions or approximate versions of functions using a finite number of

points, such as the classical fact that a polynomial of degree p can be per-

fectly recovered from p + 1 points. To our knowledge, the only general re-

sults on sample compression for real-valued functions (applicable to all learn-

able function classes) is Theorem 4.3 of David, Moran, and Yehudayoff [2016].

They propose a general technique to convert any learning algorithm achiev-

ing an arbitrary sample complexity M(ε, δ) into a compression scheme of size

O(M(ε, δ) log(M(ε, δ))), where δ may approach 1. However, their notion of

compression scheme is significantly weaker than ours: namely, they allow ĥ =

ρ(κ(S)) to satisfy merely 1
m

∑m
i=1 |ĥ(xi)− h∗(xi)| ≤ ε, rather than our uniform

ε-approximation requirement max1≤i≤m |ĥ(xi) − h∗(xi)| ≤ ε. In particular, in

the special case of F a family of binary-valued functions, their notion of sample

compression does not recover the usual notion of sample compression schemes

for classification, whereas our uniform ε-approximate compression notion does

recover it as a special case. We therefore consider our notion to be a more fitting



9

generalization of the definition of sample compression to the real-valued case.

For the problem of agnostic-compression scheme David et al. [2016, Theorem

4.1] obtained the aforementioned negative result for `2 agnostic linear regression,

as well as an Õ(log(d/ε))-size compression scheme for approximate `2 agnostic

linear regression (the latter model is not considered here, although connections

to this setting are discussed on 5.2.3).

Ashtiani et al. [2018] adapted the notion of a compression scheme to the dis-

tribution learning problem. They showed that if a class of distributions admits

robust compressibility then it is agnostically learnable. They used those re-

sults in order to provide state-of-the-art sample-complexity bounds for learning

mixture of Gaussians.

1.4 Overview of Techniques

Our point of departure is the simple but powerful observation [Schapire and

Freund, 2012] that many boosting algorithms (e.g., AdaBoost, α-Boost) are

capable of outputting a family of O(log(m)/γ2) hypotheses such that not only

does their (weighted) majority vote yield a sample-consistent classifier, but in

fact a ≈ ( 1
2 + γ) super-majority does as well. This fact implies that after

boosting, we can sub-sample a constant (i.e., independent of sample size m)

number of classifiers and thereby efficiently recover the sample compression

bounds of Moran and Yehudayoff [2016].

Our chief technical contribution, however, is in the real-valued case. As we

discuss below, extending the boosting framework from classification to regression

presents a host of technical challenges, and there is currently no off-the-shelf

general-purpose analogue of AdaBoost for real-valued hypotheses. One of our

insights is to impose distinct error metrics on the weak and strong learners: a

“stronger” one on the latter and a “weaker” one on the former. This allows us

to achieve two goals simultaneously:

(a) We give apparently the first generic construction for our weak learner,

demonstrating that the object is natural and abundantly available. This is

in contrast with many previous proposed weak regressors, whose stringent

or exotic definitions made them unwieldy to construct or verify as such.

The construction is novel and may be of independent interest.

(b) We show that the output of a certain real-valued boosting algorithm may

be sparsified so as to yield a constant size sample compression analogue
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of the Moran and Yehudayoff result for classification. This gives the first

general constant-size sample compression scheme having uniform approx-

imation guarantees on the data.



Chapter 2

Boosting Real-Valued

Functions

In the study of machine learning theory, the standard definitions of learning, as

PAC-learning for the binary case, require the learner to achieve arbitrary small

accuracy. It is often hard to be able to supply such strong requirement, but nev-

ertheless it may be much easier, for a large set of problems, to construct learners

which are somewhat better than a random labeling. Those learners are called

weak-learner as opposed to the standard strong-learners. The idea of leveraging

or boost weak-learners in order to achieve stronger learning guarantees started

as a question proposed by Kearns, and got to a positive result in the seminal

works by Schapire [1990] and Freund and Schapire [1997]. The latter contained

the well known Adaboost algorithm which is widely used in practice.

2.1 The MedBoost Algorithm

In the context of boosting for real-valued functions, the notion of an (η, γ)-weak

hypothesis plays a role analogous to the usual notion of a weak hypothesis in

boosting for classification. Using this notion, the following boosting algorithm

was proposed by Kégl [2003] as an extension to the classic Adaboost algorithm.

11
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Algorithm 1 MedBoost({(xi, yi)}i∈[m],T ,γ,η)

1: Define P0 as the uniform distribution over {1, . . . , n}
2: for t = 0, . . . , T do

3: Call weak learner to get ht and (η/2, γ)-weak hypothesis

4: w.r.t. (xi, yi) : i∼Pt (repeat until it succeeds)

5: for i = 1, . . . ,m do

6: θ
(t)
i ← 1− 2I[|ht(xi)− yi| > η/2]

7: end for

8: αt ← 1
2 ln

(
(1−γ)

∑m
i=1 Pt(i)I[θ

(t)
i =1]

(1+γ)
∑m
i=1 Pt(i)I[θ

(t)
i =−1]

)
9: if αt =∞ then

10: Return T copies of ht, and (1, . . . , 1)

11: end if

12: for i = 1, . . . ,m do

13: Pt+1(i)← Pt(i)
exp{−αtθ(t)i }∑m

j=1 Pt(j) exp{−αtθ
(t)
j }

14: end for

15: end for

16: Return (h1, . . . , hT ) and (α1, . . . , αT )

As it will be convenient for our later results, we expressed the algorithm’s

output as a sequence of functions and weights; the boosting guarantee from

Kégl [2003] applies to the weighted quantiles (and in particular, the weighted

median) of these function values.

Here we define the weighted median as

Median(y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2

}
.

Also define the weighted quantiles, for γ ∈ [0, 1/2], as

Q+
γ (y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2
− γ

}

Q−γ (y1, . . . , yT ;α1, . . . , αT ) = max

{
yj :

∑T
t=1 αtI[yj > yt]∑T

t=1 αt
<

1

2
− γ

}
,

and abbreviate Q+
γ (x) = Q+

γ (h1(x), . . . , hT (x);α1, . . . , αT ) and Q−γ (x) =

Q−γ (h1(x), . . . , hT (x);α1, . . . , αT ) for h1, . . . , hT and α1, . . . , αT the values re-

turned by MedBoost.
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2.1.1 Analysis

After proposing the algorithm, Kégl [2003] proves the following result.

Lemma 2.1. (Kégl [2003]) For a training set Z = {(x1, y1), . . . , (xm, ym)} of

size m, the return values of MedBoost satisfy

1

m

m∑
i=1

I
[
max

{∣∣∣Q+
γ/2(xi)− yi

∣∣∣ , ∣∣∣Q−γ/2(xi)− yi
∣∣∣} > η/2

]
≤

T∏
t=1

eγαt
m∑
i=1

Pt(i)e
−αtθ(t)i .

We note that, in the special case of binary classification, MedBoost is closely

related to the well-known AdaBoost algorithm [Freund and Schapire, 1997], and

the above results correspond to a standard margin-based analysis of Schapire

et al. [1998].

For our purposes, we will need the following corollary of this, which we prove

below.

Corollary 2.2. For T = Θ
(

1
γ2 ln(m)

)
, every i ∈ {1, . . . ,m} has

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi

∣∣∣} ≤ η/2.
In the proof we use the following technical lemma

Lemma 2.3. For x ≥ 1
2 + γ it holds that

x1+γ(1− x)1−γ ≤
(

1

2
+ γ

)1−γ (
1

2
− γ
)1+γ

.

Proof. Denote the left side as a function f and take log of f

log(f(x)) = (1 + γ) log(x) + (1− γ) log(1− x).

Observe that the derivative with respect to x which is (log(f(x)))′ = (1 +

γ)/x − (1 − γ)/(1 − x) is negative for x ≥ (1 + γ)/2. Since x ≥ 1
2 + γ >

(1+γ)/2 this condition holds. So the function log(f(a)) := log
(
a1+γ(1− a)1−γ

)
is monotonically decreasing and by that also f itself is monotonically decreasing.

Hence

x1+γ(1− x)1−γ ≤ (
1

2
+ γ)1+γ(1− 1

2
+ γ)1−γ .
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Proof of Corollary 2.2. By the definition of αt we know that

eαt =

(
(1− γ)

∑
θi(t)=1 Pt(i)

(1 + γ)
∑
θi(t)=−1 Pt(i)

)1/2

.

Split the sum within the RHS into {i | θi(t) = 1} and {i | θi(t) = −1} to get

that

T∏
t=1

eγαt
m∑
i=1

Pt(i)e
−αtθi(t)a

=

T∏
t=1

eγαt

[ ∑
θi(t)=1

Pt(i)e
−αt +

∑
θi(t)=−1

Pt(i)e
αt

]

=

T∏
t=1

eγαt

[
e−αt

∑
θi(t)=1

Pt(i) + eαt
∑

θi(t)=−1

Pt(i)

]

=

T∏
t=1

[
e−αt(1−γ)

∑
θi(t)=1

Pt(i) + eαt(1+γ)
∑

θi(t)=−1

Pt(i)

]
.

Plug-in eαt

=

T∏
t=1

[(
(1 + γ)

∑
θi(t)=−1 Pt(i)

(1− γ)
∑
θi(t)=1 Pt(i)

) 1−γ
2 ∑

θi(t)=1

Pt(i)

+

(
(1− γ)

∑
θi(t)=1 Pt(i)

(1 + γ)
∑
θi(t)=−1 Pt(i)

) 1+γ
2 ∑

θi(t)=−1

Pt(i)

]

=

T∏
t=1

[ ∑
θi(t)=1

Pt(i)


1+γ
2
 ∑
θi(t)=−1

Pt(i)


1−γ
2 (

1 + γ

1− γ

) 1−γ
2

+

 ∑
θi(t)=1

Pt(i)


1+γ
2
 ∑
θi(t)=−1

Pt(i)


1−γ
2 (

1− γ
1 + γ

) 1+γ
2

]
.

By the (ε, γ)-weak-learning guarantee we know that
∑
θi(t)=1 Pt(i) ≥

1
2 + γ and
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∑
θi(t)=−1 Pt(i) <

1
2 − γ and by Lemma 2.3

≤
T∏
t=1

[(
1 + γ

1− γ

) 1−γ
2

+

(
1− γ
1 + γ

) 1+γ
2

](
1

2
+ γ

) 1−γ
2
(

1

2
− γ
) 1+γ

2

=

T∏
t=1

1

2

(
1− γ
1 + γ

) γ
2
(

1 + 2γ

1− 2γ

) γ
2

(1− 4γ2)1/2

((
1 + γ

1− γ

)1/2

+

(
1− γ
1 + γ

)1/2
)
,

noting that for every γ ∈ (0, 1/3).

1

2

(
1− γ
1 + γ

) γ
2
(

1 + 2γ

1− 2γ

) γ
2

(1− 4γ2)1/2

((
1 + γ

1− γ

)1/2

+

(
1− γ
1 + γ

)1/2
)
< e−γ

2/4,

we get that

1

m

m∑
i=1

I
[
max

{∣∣∣Q+
γ/2(xi)− yi

∣∣∣ , ∣∣∣Q−γ/2(xi)− yi
∣∣∣} > η/2

]
≤

T∏
t=1

eγαt
m∑
i=1

Pt(i)e
−αtθ(t)i < e−Tγ

2/4.

Finally for T = 4
γ2 ln(m) the last bound is equal to 1

m and hence the corollary

holds.

2.2 The Sample Complexity Weak Learning

This section reveals our intention in choosing this notion of weak hypothesis,

rather than using, say, an ε-good strong learner under absolute loss. In addition

to being a strong enough notion for boosting to work, we show here that it is

also a weak enough notion for the sample complexity of weak learning to be

of reasonable size: namely, a size quantified by the fat-shattering dimension.

This result is also relevant to an open question posed by Simon [1997], which

we discuss on Subsection 2.2.3.

2.2.1 The Notion of ”Weak Learning”

As mentioned above, the notion of a weak learner for learning real-valued func-

tions must be formulated carefully. The näıve thought that we could take any

learner guaranteeing, say, absolute loss at most 1
2 − γ is known to not be strong

enough to enable boosting to ε loss. However, if we make the requirement too
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strong, such as in Freund and Schapire [1997] for AdaBoost.R, then the sam-

ple complexity of weak learning will be so high that weak learners cannot be

expected to exist for large classes of functions.

Starting with Kearns and Schapire, the notion of weak learning was tied

to the notion of PAC learnability. Weak learning is, as on may expect, the

weak version of PAC learning. This relation meant that also weak-learning

was defined using a loss-function and a (weak) upper-bound on the loss of the

resulting hypothesis, namely a fixed, yet bounded away from 1/2, bound on the

expected loss.

Normally when extending the PAC paradigm to the real-valued/continuous

case we just replace the loss-function. So we get the following

Definition 2.1 (“Standard”-Weak-Hypothesis). For γ ∈ [0, 1/2], we say that

f : X → R is an an γ-weak hypothesis (with respect to distribution D and target

f∗ ∈ F) if

EX∼D [l(fS(x), f∗(x))] ≤ 1

2
− γ.

Unfortunately, this extension for the problem of boosting essentially fails.

Duffy and Helmbold [2002, Remark 2.1] points out that, using this notion of

weak learning, one can’t guarantee that using the method of modifying the dis-

tribution over the sample will force the learner to establish a good hypothesis.

This is due to the fact that, unlike the binary-case. the error can be spread

evenly over all the sample, meaning that the error remains the same regardless

of the distribution on the sample. This might result in the learner outputting

the same hypothesis on each iteration and hence not improving the error of

the final output regressor. Some lines of work, including Freund and Schapire’s

AdaBoost.R, used more complex boosting ideas in order to bypass this prob-

lem. Those algorithms are either problematic in their runtime, or, as in the

AdaBoost.R case, based on weak learners whose sample complexity depends

on the Pseudo-dimension of the class 1, which tends to be so high that weak

learners cannot be expected to exist for large classes of functions.

For this reason we use a different notion. Recall the definition

Definition 2.2 ((η, γ)-Weak-Hypothesis). For η ∈ [0, 1] and γ ∈ [0, 1/2], we

say that f : X → R is an an (η, γ)-weak hypothesis (with respect to distribution

1For the definition of the Pseudo-dimension see 5.2
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D and target f∗ ∈ F) if

PX∼D(|f(X)− f∗(X)| > η) ≤ 1

2
− γ.

The (η, γ)-weak-learner, which has appeared, among other works, in An-

thony et al. [1996], Simon [1997], Avnimelech and Intrator [1999], Kégl [2003],

gets around this difficulty by demanding a bound on the measure of the points

in which the hypothesis has “big” local error. Furthermore this notion was in

fact proved useful in various, quite simple, boosting mechanisms, but, to our

knowledge, provable general constructions of such learners have been lacking.

Note that, as in other definitions of weak-learning, this definition also uses a

“strong” definition of learning, which was proposed by Simon.

Definition 2.3 ((ε, γ)-good-model). For ε, η ∈ [0, 1] and γ ∈ [0, 1/2], we say

that f : X → R is an an (ε, γ)-good model (with respect to distribution D and

target f∗ ∈ F) if

PX∼D(|f(X)− f∗(X)| > η) ≤ ε.

and a A is γ-learner if for every ε, δ and sample S of size m = m(ε, δ), with

probability at least 1 − δ, f = A(S) is a (ε, γ)-good-model. So (η, γ)-weak-

learner is simply a γ-learner with the error parameter ε fixed, and bounded

away from 1/2.

Although there exist several used of this type of “weak-learning” to our

knowledge, there exist no provable constructions of such algorithms. We now

present a provable and very natural, namely ERM based, (η, γ)-learner. From

this result we are also able to construct our (η, γ)-weak-learner, which was used

by our compression-boosting mechanism.

2.2.2 Upper Bound on The Sample Complexity of (ε, γ)-

Good-Learning

The following result is stated in the notion of the more general case of (ε, γ)-

good-model, in order to apply it into our boosting mechanism we later fix the

error parameter ε as was previously discussed, which then yields an Upper

Bound on the sample complexity of (ε, γ)-weak-learner.

Define ρη(f, g) = P2m(x : |f(x) − g(x)| > η), where P2m is the empirical

measure induced by X1, . . . , X2m iid P -distributed random variables (the m

data points and m ghost points). Define Nη(β) as the β-covering numbers of F
under the ρη pseudo-metric.
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Theorem 2.4. Fix any η, β ∈ (0, 1), α ∈ [0, 1), and m ∈ N. For X1, . . . , Xm

iid P -distributed, with probability at least 1−E
[
Nη(1−α)/2(β/8)

]
2e−mβ/96, every

f ∈ F with max1≤i≤m |f(Xi) − f∗(Xi)| ≤ αη satisfies P (x : |f(x) − f∗(x)| >
η) ≤ β.

Proof. This proof roughly follows the usual symmetrization argument for uni-

form convergence Vapnik and Červonenkis [1971], Haussler [1992], with a few im-

portant modifications to account for this (η, β)-based criterion. If E
[
Nη(1−α)/2(β/8)

]
is infinite, then the result is trivial, so let us suppose it is finite for the remain-

der of the proof. Similarly, if m < 8/β, then 2e−mβ/96 > 1 and hence the

claim trivially holds, so let us suppose m ≥ 8/β for the remainder of the proof.

Without loss of generality, suppose f∗(x) = 0 everywhere and every f ∈ F is

non-negative (otherwise subtract f∗ from every f ∈ F and redefine F as the ab-

solute values of the differences; note that this transformation does not increase

the value of Nη(1−α)/2(β/8) since applying this transformation to the original

Nη(1−α)/2(β/8) functions remains a cover).

Let X1, . . . , X2m be iid P -distributed. Denote by Pm the empirical mea-

sure induced by X1, . . . , Xm, and by P ′m the empirical measure induced by

Xm+1, . . . , X2m. We have

P(∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1)

≥ P (∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1 and P ′m(x : f(x) > η) > β/2) .

Denote by Am the event that there exists f ∈ F satisfying P (x : f(x) > η) > β

and Pm(x : f(x) ≤ αη) = 1, and on this event let f̃ denote such an f ∈ F
(chosen solely based on X1, . . . , Xm); when Am fails to hold, take f̃ to be some

arbitrary fixed element of F . Then the expression on the right hand side above

is at least as large as

P
(
Am and P ′m(x : f̃(x) > η) > β/2

)
,

and noting that the event Am is independent of Xm+1, . . . , X2m, this equals

E
[
IAm · P

(
P ′m(x : f̃(x) > η) > β/2

∣∣∣X1, . . . , Xm

)]
. (2.1)

Then note that for any f ∈ F with P (x : f(x) > η) > β, a Chernoff bound
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implies

P
(
P ′m(x : f(x) > η) > β/2

)
= 1− P

(
P ′m(x : f(x) > η) ≤ β/2

)
≥ 1− exp{−mβ/8} ≥ 1

2
,

where we have used the assumption that m ≥ 8
β here. In particular, this implies

that the expression in (2.1) is no smaller than 1
2P(Am). Altogether, we have

established that

P(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2P(∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1) . (2.2)

Now let σ(1), . . . , σ(m) be independent random variables (also independent

of the data), with σ(i) ∼ Uniform({i,m+ i}), and denote σ(m+ i) as the sole

element of {i,m+ i}\{σ(i)} for each i ≤ m. Also denote by Pm,σ the empirical

measure induced by Xσ(1), . . . , Xσ(m), and by P ′m,σ the empirical measure in-

duced by Xσ(m+1), . . . , Xσ(2m). By exchangeability of (X1, . . . , X2m), the right

hand side of (2.2) is equal

P
(
∃f ∈ F : P ′m,σ(x : f(x) > η) > β/2 and Pm,σ(x : f(x) ≤ αη) = 1

)
.

Now let F̂ ⊆ F be a minimal subset of F such that max
f∈F

min
f̂∈F̂

ρη(1−α)/2(f̂ , f) ≤

β/8. The size of F̂ is at most Nη(1−α)/2(β/8), which is finite almost surely

(since we have assumed above that its expectation is finite). Then note that

(denoting by X[2m] = (X1, . . . , X2m)) the above expression is at most

P
(
∃f ∈ F̂ : P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

)
≤ E

[
Nη(1−α)/2(β/8) max

f∈F̂
P
(
P ′m,σ(x :f(x)>η(1 + α)/2) > (3/8)β

and Pm,σ(x :f(x)>η(1 + α)/2) ≤ β/8
∣∣X[2m]

)]
.

(2.3)
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Then note that for any f ∈ F , we have almost surely

P
(
P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ P

(
P2m(x : f(x) > η(1 + α)/2) > (3/16)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ exp{−mβ/96} ,

where the last inequality is by a Chernoff bound, which (as noted by Hoeffding

[1963]) remains valid even when sampling without replacement. Together with

(2.2) and (2.3), we have that

P(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2E
[
Nη(1−α)/2(β/8)

]
e−mβ/96.

Lemma 2.5. There exist universal numerical constants c, c′ ∈ (0,∞) such that

∀η, β ∈ (0, 1),

Nη(β) ≤
(

2

ηβ

)cd(c′ηβ)
,

where d(·) is the fat-shattering dimension.

Proof. Mendelson and Vershynin [2003, Theorem 1] establishes that the ηβ-

covering number of F under the L2(P2m) pseudo-metric is at most

(
2

ηβ

)cd(c′ηβ)
(2.4)

for some universal numerical constants c, c′ ∈ (0,∞). Then note that for any

f, g ∈ F , Markov’s and Jensen’s inequalities imply ρη(f, g) ≤ 1
η‖f−g‖L1(P2m) ≤

1
η‖f − g‖L2(P2m). Thus, any ηβ-cover of F under L2(P2m) is also a β-cover of

F under ρη, and therefore (2.4) is also a bound on Nη(β).

Combining the above two results yields the following theorem.

Theorem 2.6. For some universal numerical constants c1, c2, c3 ∈ (0,∞), for

any η, δ, β ∈ (0, 1) and α ∈ [0, 1), letting X1, . . . , Xm be iid P -distributed, where

m =

⌈
c1
β

(
d(c2ηβ(1− α)) ln

(
c3

ηβ(1− α)

)
+ ln

(
1

δ

))⌉
,
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with probability at least 1− δ, every f ∈ F with maxi∈[m] |f(Xi)− f∗(Xi)| ≤ αη
satisfies P (x : |f(x)− f∗(x)| > η) ≤ β.

Proof. The result follows immediately from combining Theorem 2.4 and Lemma 2.5.

In particular, the specific case of weak-learners, as stated in Theorem 1.3,

follows immediately from this result by taking β = 1/2− γ and α = γ/2.

2.2.3 Tightness of The Upper Bound

To discuss tightness of Theorem 2.6, we note that in addition to the definition

of a (β, η)-good model Simon [1997] also proved the following lower bound

Theorem 2.7 (Simon [1997]). Let A be an algorithm which learns function

class F with an (β, η)-good model

1. If F is nontrivial 2 , β < 1/2 and η < ∆(F )/2. then A needs Ω(ln(1/δ)/β)

examples.

2. If β ≤ 1/8, 0 < δ ≤ 1/100. then A needs Ω((dNF (η)− 1)/β) examples.

When ∆(F ) = sup{‖g − f‖∞ | ∃x ∈ X : f(x) = g(x)}.
Combining the two we get that a sample complexity lower bound for the

same criterion of

Ω

(
dNF (cη)

β
+

1

β
log

1

δ

)
,

where dNF (·) is a quantity somewhat smaller than the fat-shattering dimension,

essentially representing a fat Natarajan dimension.

Simon showed that this lower bound is tight and placed an open question

Open Problem: For every function class F there exist an algorithm A which

learns F with an (β, η)-good model using

O

(
dNF (η)

β
+

1

β
ln(1/δ)

)
examples.

Thus, aside from the differences in the complexity measure (and a logarith-

mic factor), we establish an upper bound of a similar form to Simon’s lower

2Meaning: there exist f, g ∈ F which are not pairwise disjoin, namely ∃x ∈ X : f(x) =
g(x).
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bound and hence making a significant progress towards solving Simon’s open

question.



Chapter 3

From Boosting to

Compression

Generally, our strategy for converting the boosting algorithm MedBoost into

a sample compression scheme of smaller size follows a strategy of Moran and

Yehudayoff for binary classification, based on arguing that because the ensemble

makes its predictions with a margin (corresponding to the results on quantiles

in Corollary 2.2), it is possible to recover the same proximity guarantees for the

predictions while using only a smaller subset of the functions from the original

ensemble. Specifically, we use the following general sparsification strategy.

For α1, . . . , αT ∈ [0, 1] with
∑T
t=1 αt = 1, denote by Cat(α1, . . . , αT ) the

categorical distribution: i.e., the discrete probability distribution on {1, . . . , T}
with probability mass αt on t.

Algorithm 2 Sparsify({(xi, yi)}i∈[m], γ, T, n)

1: Run MedBoost({(xi, yi)}i∈[m], T, γ, η)
2: Let h1, . . . , hT and α1, . . . , αT be its return values
3: Denote α′t = αt/

∑T
t′=1 αt′ for each t ∈ [T ]

4: repeat
5: Sample (J1, . . . , Jn) ∼ Cat(α′1, . . . , α′T )n

6: Let F = {hJ1 , . . . , hJn}
7: until max1≤i≤m |{f ∈ F : |f(xi)− yi| > η}| < n/2
8: Return F

23
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For any values a1, . . . , an, denote the (unweighted) median

Med(a1, . . . , an) = Median(a1, . . . , an; 1, . . . , 1).

Our intention in dicussing the above algorithm is to argue that, for a sufficiently

large choice of n, the above procedure returns a set {f1, . . . , fn} such that

∀i ∈ [m], |Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

We analyze this strategy separately for binary classification and real-valued

functions, since the argument in the binary case is much simpler (and demon-

strates more directly the connection to the original argument of Moran and

Yehudayoff), and also because we arrive at a tighter result for binary functions

than for real-valued functions.

3.1 Binary Classification

We begin with the simple observation about binary classification (i.e., where

the functions in F all map into {0, 1}). The technique here is quite simple,

and follows a similar line of reasoning to the original argument of Moran and

Yehudayoff. The argument for real-valued functions below will diverge from this

argument in several important ways, but the high level ideas remain the same.

The compression function is essentially the one introduced by Moran and

Yehudayoff, except applied to the classifiers produced by the above Sparsify

procedure, rather than a set of functions selected by a minimax distribution

over all classifiers produced by O(d) samples each. The weak hypotheses in

MedBoost for binary classification can be obtained using samples of size O(d).

Thus, if the Sparsify procedure is successful in finding n such classifiers whose

median predictions are within η of the target yi values for all i, then we may

encode these n classifiers as a compression set, consisting of the set of k = O(nd)

samples used to train these classifiers, together with k log k extra bits to encode

the order of the samples.1 To obtain Theorem 1.1, it then suffices to argue that

n = Θ(d∗) is a sufficient value. The proof follows.

Proof of Theorem 1.1. Recall that d∗ bounds the VC dimension of the class

of sets {{ht : t ≤ T, ht(xi) = 1} : 1 ≤ i ≤ m}. Thus for the iid samples

1In fact, k logn bits would suffice if the weak learner is permutation-invariant in its data
set.
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hJ1 , . . . , hJn obtained in Sparsify, for n = 64(2309 + 16d∗) > 2304+16d∗+log(2)
1/8 ,

by the VC uniform convergence inequality of Vapnik and Červonenkis [1971],

with probability at least 1/2 we get that

max
1≤i≤m

∣∣∣∣∣∣
 1

n

n∑
j=1

hJj (xi)

−( T∑
t=1

α′ht(xi)

)∣∣∣∣∣∣ < 1/8.

In particular, if we choose γ = 1/8, η = 1, and T = Θ(log(m)) appro-

priately, then Corollary 2.2 implies that every yi = I
[∑T

t=1 α
′ht(xi) ≥ 1/2

]
and

∣∣∣ 12 −∑T
t=1 α

′ht(xi)
∣∣∣ ≥ 1/8 so that the above event would imply every

yi = I
[
1
n

∑n
j=1 hJj (xi) ≥ 1/2

]
= Med(hJ1(xi), . . . , hJn(xi)). Note that the

Sparsify algorithm need only try this sampling log2(1/δ) times to find such

a set of n functions. Combined with the description above (from Moran and

Yehudayoff, 2016) of how to encode this collection of hJi functions as a sample

compression set plus side information, this completes the construction of the

sample compression scheme.

3.2 Real-Valued Functions

Next we turn to the general case of real-valued functions (where the functions

in F may generally map into [0, 1]). We have the following result, which says

that the Sparsify procedure can reduce the ensemble of functions from one

with T = O(log(m)/γ2) functions in it, down to one with a number of functions

independent of m.

Theorem 3.1. Choosing

n = Θ

(
1

γ2
d∗(cη) log2(d∗(cη)/η)

)
suffices for the Sparsify procedure to return {f1, . . . , fn} with

max
1≤i≤m

|Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

Proof. Recall from Corollary 2.2 that MedBoost returns functions h1, . . . , hT ∈
F and α1, . . . , αT ≥ 0 such that ∀i ∈ {1, . . . ,m},

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi

∣∣∣} ≤ η/2,
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where {(xi, yi)}mi=1 is the training data set. We use this property to sparsify

h1, . . . , hT from T = O(log(m)/γ2) down to k elements, where k will depend

on η, γ, and the dual fat-shattering dimension of F (actually, just of H =

{h1, . . . , hT } ⊆ F) — but not sample size m.

Letting α′j = αj/
∑T
t=1 αt for each j ≤ T , we will sample k hypotheses{

h̃1, . . . , h̃k

}
=: H̃ ⊆ H with each h̃i = hJi , where (J1, . . . , Jk) ∼ Cat(α′1, . . . , α′T )k

as in Sparsify. Define a function ĥ(x) = Med(h̃1(x), . . . , h̃k(x)). We claim that

for any fixed i ∈ [m], with high probability

|ĥ(xi)− f∗(xi)| ≤ η/2. (3.1)

Indeed, partition the indices [T ] into the disjoint sets

L(x) =
{
j ∈ [T ] : hj(x) < Q−γ (h1(x), . . . , hT (x);α1, . . . , αT )

}
,

M(x) =
{
j ∈ [T ] : Q−γ (h1(x), ..., hT (x);α1, ..., αT ) ≤hj(x)≤ Q+

γ (h1(x), ..., hT (x);α1, ..., αT )
}
,

R(x) =
{
j ∈ [T ] : hj(x) > Q+

γ (h1(x), . . . , hT (x);α1, . . . , αT )
}
.

Then the only way (3.1) can fail is if half or more indices J1, . . . , Jk sampled fall

into R(xi) — or if half or more fall into L(xi). Since the sampling distribution

puts mass less than 1/2− γ on each of R(xi) and L(xi), Chernoff’s bound puts

an upper estimate of exp(−2kγ2) on either event. Hence,

P
(
|ĥ(xi)− f∗(xi)| > η/2

)
≤ 2 exp(−2kγ2). (3.2)

Next, our goal is to ensure that with high probability, (3.1) holds simultane-

ously for all i ∈ [m]. Define the map ξ : [m]→ Rk by ξ(i) = (h̃1(xi), . . . , h̃k(xi)).

Let G ⊆ [m] be a minimal subset of [m] such that

max
i∈[m]

min
j∈G
‖ξ(i)− ξ(j)‖∞ ≤ η/2.

This is just a minimal `∞ covering of [m]. Then

P (∃i ∈ [m] : |Med(ξ(i))− f∗(xi)| > η) ≤∑
j∈G

P (∃i : |Med(ξ(i))− f∗(xi)| > η, ‖ξ(i)− ξ(j)‖∞ ≤ η/2) ≤

∑
j∈G

P (|Med(ξ(j))− f∗(xj)| > η/2) ≤ 2N∞([m], η/2) exp(−2kγ2),
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where N∞([m], η/2) is the η/2-covering number (under `∞) of [m], and we used

the fact that

|Med(ξ(i))−Med(ξ(j))| ≤ ‖ξ(i)− ξ(j)‖∞ .

Finally, to bound N∞([m], η/2), note that ξ embeds [m] into the dual class

F∗. Thus, we may apply the bound in [Rudelson and Vershynin, 2006, Display

(1.4)]:

logN∞([m], η/2) ≤ Cd∗(cη) log2(k/η),

where C, c are universal constants and d∗(·) is the dual fat-shattering dimension

of F . It now only remains to choose a k that makes exp
(
Cd∗(cη) log2(k/η)− 2kγ2

)
as small as desired.

To establish Theorem 1.2, we use the weak learner from above, with the

booster MedBoost from Kégl, and then apply the Sparsify procedure. Com-

bining the corresponding theorems, together with the same technique for con-

verting to a compression scheme discussed above for classification (i.e., encoding

the functions with the set of training examples they were obtained from, plus

extra bits to record the order and which examples which weak hypothesis was

obtained by training on), this immediately yields the result claimed in Theo-

rem 1.2, which represents our main new result for sample compression of general

families of real-valued functions.

3.3 Examples

As an example for the generality and usefulness of the above schemes, we present

two interesting and efficient compression schemes than can be derived from it.

the main technical result needed in order to apply our method to those cases

was to find and prove and dual Fat-Shattering dimension of the function-classes

at hand, a problem which isn’t trivial most of the time, required using tools

from various domains. Leveraging novel and relatively-new algorithmic results

from learning theory yields the final wanted compression-schemes.

3.3.1 Sample compression for BV functions

The function class BV(v) consists of all f : [0, 1]→ R for which

V (f) := sup
n∈N

sup
0=x0<x1<...<xn=1

n−1∑
i=1

|f(xi+1)− f(xi)| ≤ v.
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It is known [Anthony and Bartlett, 1999, Theorem 11.12] that dBV(v)(t) =

1+bv/(2t)c. In Theorem 3.3 below, we show that the dual class has d∗BV(v)(t) =

Θ (log(v/t)). Long [2004] presented an efficient, proper, consistent learner for

the class F = BV(1) with range restricted to [0, 1], with sample complexity

mF (ε, δ) = O( 1
ε log 1

δ ). Combined with Theorem 1.2, this yields

Corollary 3.2. Let F = BV(1) ∩ [0, 1][0,1] be the class f : [0, 1] → [0, 1] with

V (f) ≤ 1. Then the proper, consistent learner L of Long [2004], with target

generalization error ε, admits a sample compression scheme of size O(k log k),

where

k = O

(
1

ε
log2 1

ε
· log

(
1

ε
log

1

ε

))
.

The compression set is computable in expected runtime

O

(
n

1

ε3.38
log3.38 1

ε

(
log n+ log

1

ε
log

(
1

ε
log

1

ε

)))
.

The remainder of this section is devoted to proving

Theorem 3.3. For F = BV(v) and t < v, we have d∗F (t) = Θ (log(v/t)).

First, we define some preliminary notions:

Definition 3.1. For a binary m× n matrix M , define

V (M, i) :=

m∑
j=1

I[Mj,i 6= Mj+1,i],

G(M) :=

n∑
i=1

V (M, i),

V (M) := max
i∈[n]

V (M, i).

Lemma 3.4. Let M be a binary 2n × n matrix. If for each b ∈ {0, 1}n there is

a row j in M equal to b, then

V (M) ≥ 2n

n
.

In particular, for at least one row i, we have V (M, i) ≥ 2n/n.

Proof. Let M be a 2n × n binary such that for each b ∈ {0, 1}n there is a row

j in M equal to b. Given M ’s dimensions, every b ∈ {0, 1}n appears exactly in
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one row of M , and hence the minimal Hamming distance between two rows is

1. Summing over the 2n − 1 adjacent row pairs, we have

G(M) =

n∑
i=1

V (M, i) =

n∑
i=1

m∑
j=1

I[Mj,i 6= Mj+1,i] ≥ 2n − 1,

which averages to

1

n

n∑
i=1

V (M, i) =
G(M)

n
≥ 2n − 1

n
.

By the pigeon-hole principle, there must be a row j ∈ [n] for which V (M, i) ≥
2n−1
n , which implies V (M) ≥ 2n−1

n .

We split the proof of Theorem 3.3 into two estimates:

Lemma 3.5. For F = BV(v) and t < v, d∗F (t) ≤ 2 log2(v/t).

Lemma 3.6. For F = BV(v) and 4t < v, d∗F (t) ≥ blog2(v/t)c.

Proof of Lemma 3.5. Let {f1, . . . , fn} ⊂ F be a set of functions that are t-

shattered by F∗. In other words, there is an r ∈ Rn such that for each b ∈ {0, 1}n

there is an xb ∈ F∗ such that

∀i ∈ [n], xb(fi)

≥ ri + t, bi = 1

≤ ri − t, bi = 0
.

Let us order the xbs by magnitude x1 < x2 < . . . < x2n , denoting this

sequence by (xi)
2n

i=1. Let M ∈ {0, 1}2n×n be a matrix whose ith row is bj , the

latter ordered arbitrarily.

By Lemma 3.4, there is i ∈ [n] s.t.

2n∑
j=1

I[M(j, i) 6= M(j + 1, i)] ≥ 2n

n
.

Note that if M(j, i) 6= M(j + 1, i) shattering implies that

xj(fi) ≥ ri + t and xj+1(fi) ≤ ri − t

or

xj(fi) ≤ ri − t and xj+1(fi) ≥ ri + t;
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either way,

|fi(xj)− fi(xj+1)| = |xj(fi)− xj+1(fi)| ≥ 2t.

So for the function fi, we have

2n∑
j=1

|fi(xj)− fi(xj+1)| =
2n∑
j=1

|xj(fi)− xj+1(fi)| ≥
2n∑
j=1

I[bji 6= bj+1i · 2t ≥
2n

n
· 2t.

As {xj}2
n

j=1 is a partition of [0, 1] we get

v ≥
2n∑
j=1

|fi(xj)− fi(xj+1)| ≥ t2n+1

n
≥ t2n/2

and hence

v/t ≥ 2n/2

⇒ 2 log2(v/t) ≥ n.

Proof of Lemma 3.6. We construct a set of n = blog2(v/t)c functions that are t-

shattered by F∗. First, we build a balanced Gray code [Flahive and Bose, 2007]

with n bits, which we arrange into the rows of M . Divide the unit interval into

2n segments and define, for each j ∈ [2n],

xj :=
j

2n
.

Define the functions f1, . . . , , fblog2(v/t)c as follows:

fi(xj) =

t, M(j, i) = 1

−t, M(j, i) = 0
.

We claim that each fi ∈ F . Since M is balanced Gray code,

V (M) =
2n

n
≤ v

t log2(v/t)
≤ v

2t
.

Hence, for each fi, we have

V (fi) ≤ 2tV (M, i) ≤ 2t
v

2t
= v.
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Next, we show that this set is shattered by F∗. Fix the trivial offest r1 = ... =

rn = 0 For every b ∈ {0, 1}n there is a j ∈ [2n] s.t. b = bi. By construction, for

every i ∈ [n], we have

xj(fi) = fi(xj) =

t ≥ ri + t, M(j, i) = 1

−t ≤ ri − t, M(j, i) = 0
.

3.3.2 Sample compression for nearest-neighbor regression

Let (X , ρ) be a metric space and define, for L ≥ 0, the collection FL of all

f : X → [0, 1] satisfying

|f(x)− f(x′)| ≤ Lρ(x, x′);

these are the L-Lipschitz functions. Gottlieb et al. [2017b] showed that

dFL(t) = O
(
dLdiam(X)/teddim(X )

)
,

where diam(X ) is the diameter and ddim is the doubling dimension, defined

therein. The proof is achieved via a packing argument, which also shows that

the estimate is tight. Below we show that d∗FL(t) = Θ(log (M(X , 2t/L))), where

M(X , ·) is the packing number of (X , ρ). Applying this to the efficient nearest-

neighbor regressor2 of Gottlieb et al. [2017a], we obtain

Corollary 3.7. Let (X , ρ) be a metric space with hypothesis class FL, and let L
be a consistent, proper learner for FL with target generalization error ε. Then

L admits a compression scheme of size O(k log k), where

k = O

(
D(ε) log

1

ε
· logD(ε) log

(
1

ε
logD(ε)

))
and

D(ε) =

⌈
Ldiam(X )

ε

⌉ddim(X )

.

We now prove our estimate on the dual fat-shattering dimension of F :

2 In fact, the technical machinery in Gottlieb et al. [2017a] was aimed at achieving approx-
imate Lipschitz-extension, so as to gain a considerable runtime speedup. An exact Lipschitz
extension is much simpler to achieve. It is more computationally costly but still polynomial-
time in sample size.
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Lemma 3.8. For F = FL, d∗F (t) ≤ log2 (M(X , 2t/L)).

Proof. Let {f1, . . . , fn} ⊂ FL a set that is t-shattered by F∗L. For b 6= b′ ∈
{0, 1}n, let i be the first index for which bi 6= b′i, say, bi = 1 6= 0 = b′. By

shattering, there are points xb, xb′ ∈ F∗L such that xb(fi) ≥ ri + t and xb′(fi) ≤
ri − t, whence

fi(xb)− fi(xb′) ≥ 2t

and

Lρ(xb, xb′) ≥ fi(xb)− fi(xb′) ≥ 2t.

It follows that for b 6= b′ ∈ {0, 1}n, we have ρ(xb, xb′) ≥ 2t/L. Denoting by

M(X , ε) the ε-packing number of X , we get

2n = |{xb | b ∈ {0, 1}n}| ≤ M(X , 2t/L).

Lemma 3.9. For F = FL and t < L, d∗F (t) ≥ log2 (M(X , 2t/L)).

Proof. Let S = {x1, ..., xm} ⊆ X be a maximal 2t/L-packing of X . Sup-

pose that c : S → {0, 1}blog2mc is one-to-one. Define the set of function

F = {f1, . . . , fblog2(m)c} ⊆ FL by

fi(xj) =

t, c(xj)i = 1

−t, c(xj)i = 0
.

For every f ∈ F and every two points x, x′ ∈ S it holds that

|f(x)− f(x′)| ≤ 2t = L · 2t/L ≤ Lρ(x, x′).

This set of functions is t-shattered by S and is of size blog2mc = blog2 (M(X , 2t/L))c.
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Agnostic-Compressable loss

functions

4.1 Problem setting, definitions and notation

Our instance space is X = Rd, label space is Y = R, and hypothesis class is

F ⊆ YX , consisting of all ha,b : X → Y given by ha,b(x) = 〈a,x〉 + b, indexed

by a ∈ Rd, b ∈ R. For 1 ≤ p <∞, the loss incurred by a hypothesis h ∈ F on a

labeled sample S = ((x1, y1), . . . , (xm, ym)) is given by

Lp(h, S) :=
1

m

m∑
i=1

|h(xi)− yi|p,

while for p =∞,

L∞(h, S) := max
1≤i≤m

|h(xi)− yi|.

Following David et al. [2016] , let S = (x1, yi), . . . , (xm, ym) be a tagged

sample drawn i.i.d from some unknown distribution, an let l : X × R → R be

some loss function. We say that (κ, ρ) is an agnostic sample compression scheme

for H if, for every sample S, fS := ρ(κ(S)), achieves F-competitive empirical

loss:

Lp(fS , S) ≤ inf
f∈F

Lp(f, S).

33
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In principle, the size k of an agnostic compression scheme may depend on the

data set sizem, in which case we may denote this dependence by k(m). However,

in this work we are primarily interested in the case when k(m) is bounded : that

is, k(m) ≤ k for some m-independent value k. Note that the above definition is

fully general, in that it defines a notion of agnostic compression scheme for any

function class F and loss function L, though in the present work we focus on F
as linear functions in Rd and the loss as Lp for 1 ≤ p ≤ ∞.

Remark. At first, it might seem unclear why this is an appropriate generalization

of sample compression to the agnostic setting. To see that it is so, we note that

one of the main interests in sample compression schemes is their ability to

generalize. More formally: Denoting the excess risk of a learner to be

R := ES [Lp(fS , S)]− inf
f∈F

ES [Lp(fS , S)],

we can say that sample-compression-schemes based learners achieve low excess-

risk under a distribution P on X ×Y when the data S are sampled iid according

to P [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1995, Graepel, Her-

brich, and Shawe-Taylor, 2005]. Also, as mentioned, in this work we are primar-

ily interested in sample compression schemes that have bounded size: k(m) ≤ k
for an m-independent value k. Furthermore, we are also focusing on the most-

general case, where this size bound should be independent of everything else in

the scenario, such as the data S or the underlying distribution P . Given these

interests, we claim that the above definition is essentially the only reasonable

choice. More specifically, for Lp loss with 1 ≤ p <∞, any compression scheme

with k(m) bounded such that its expected excess risk under any P converges

to 0 as m → ∞ necessarily satisfies the above condition (or is easily converted

into one that does). To see this, note that for any data set S for which such a

compression scheme fails to satisfy the above F-competitive empirical loss cri-

terion, we can define a distribution P that is simply uniform on S, and then the

compression scheme’s selection function would be choosing a bounded number

of points from S and a bounded number of bits, while guaranteeing that excess

risk under P approaches 0, or equivalently, excess empirical loss approaches 0.

To make this argument fully formal, only a slight modification is needed, to

handle having multiple copies of points from S in the compression set; given

that the size is bounded, these repetitions can be encoded in a bounded number

of extra bits, so that we can stick to strictly distinct points in the compression

set.
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In the converse direction, we also note that any bounded-size agnostic com-

pression scheme (in the sense of the above definition) will be guaranteed to have

excess risk under P converging to 0 as m → ∞, in the case that S is sampled

iid according to P , for losses Lp with 1 ≤ p < ∞, as long as P guarantees

that (X,Y ) ∼ P has Y bounded (almost surely). This follows from classic

arguments about the generalization ability of compression schemes, which in-

cludes results for the agnostic case [Graepel, Herbrich, and Shawe-Taylor, 2005].

For unbounded Y one cannot, in general, obtain distribution-free generalization

bounds. However, one can still obtain generalization under certain broader re-

strictions (see, e.g., Mendelson, 2015 and references therein). The generalization

problem becomes more subtle for the L∞ loss: this cannot be expressed as a

sum of pointwise losses and there are no standard techniques for bounding the

deviation of the sample risk from the true risk. Our above results, in particu-

lar the “hybrid-error” analysis on Theorem 2.4, can produce such some insight

about the guarantee achieved by minimizing empirical L∞ loss. We leave this

connection for our future research.

We denote set cardinality by |·| and [m] := {1, . . . ,m}. Vectors v ∈ Rd are

denoted by boldface, and their jth coordinate is indicated by v(j). (Thus, vi(j)

indicates the jth coordinate of the ith vector in a sequence.)

4.2 Impossibility results for `p, 1 < p <∞

David et al. [2016, Theorem 4.1] proved an impossibility result for the `2 loss:

Theorem 4.1 (David et al. [2016]). There is no agnostic sample compression

scheme for zero-dimensional linear regression with size k(m) ≤ m/2.

We show that constant-size compression is impossible for all `p losses with

1 < p <∞:

Theorem 4.2. There is no agnostic sample compression scheme for zero-

dimensional linear regression under `p loss, 1 < p < ∞, with size k(m) <

log(m).

Proof. Consider a sample (y1, . . . , ym) ∈ {0, 1}m. Partition the indices i ∈ [m]

into S0 := {i ∈ [m] : yi = 0} and S1 := {i ∈ [m] : yi = 1}. The empirical risk

minimizer is given by

r̂ := argmin
s∈R

m∑
i=1

|yi − s|p.
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To obtain an explicit expression for r̂, define

F (s) =

m∑
i=1

|yi − s|p = |S1|(1− s)p + |S0|sp =: N1(1− s)p +N0s
p.

We then compute

F ′(s) = pN0s
p−1 − pN1(1− s)p−1

and find that F ′(s) = 0 occurs at

ŝ =
µ1/(p−1)

1 + µ1/(p−1)
,

where µ = N1/N0. A straightforward analysis of the second derivative shows

that ŝ = r̂ is indeed the unique minimizer of F .

Thus, given a sample of size m, the unique minimizer r̂ is uniquely deter-

mined by N0 — which can take on any of integer m+1 values between 0 and m.

On the other hand, every output of a k-selection function κ outputs a multiset

Ŝ ⊆ S of size k′ and a binary string of length k′′ = k − k′. Thus, the total

number of values representable by a k-selection scheme is at most

k∑
k′=0

k′2k−k
′
< 2k+1 − k,

which, for k < logm, is less than m.

Remark. A more refined analysis, along the lines of David et al. [2016, Theorem

4.1], should yield a lower bound of k = Ω(m). A technical complication is that

unlike the p = 2 case, whose empirical risk minimizer has a simple explicit form,

the general `p loss does not admit a closed-form solution and uniqueness must be

argued from general convexity principles. We leave this for our future research.

4.3 Compressibility results for `1 and `∞

In sharp contrast with the 1 < p <∞ case, we show that in Rd, agnostic linear

regression admits a compression scheme of size d+ 1 under `1 and d+ 2 under

`2.
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Theorem 4.3. There exists an efficiently computable compression scheme for

agnostic linear regression in Rd under the `1 loss of size d+ 1.

Proof. We start with d = 0. The sample then consists of (y1, . . . , ym) [formally:

pairs (xi, yi), where xi ≡ 0], and F = R [formally, all functions h : 0 7→ R]. We

define fS to be the median of (y1, . . . , ym), which for odd m is defined uniquely

and for even m can be taken arbitrarily as the smaller of the two midpoints. It

is well-known that such a choice minimizes the empirical `1 risk, and it clearly

constitutes a compression scheme of size 1.

The case d = 1 will require more work. The sample consists of (xi, yi)i∈[m],

where xi, yi ∈ R, and F = {R 3 x 7→ ax+ b : a, b ∈ R}. Let (a?, b?) be a (pos-

sibly non-unique) minimizer of

L(a, b) :=
∑
i∈[m]

|(axi + b)− yi|, (4.1)

achieving the value L?. We claim that we can always find two indices ı̂, ̂ ∈ [m]

such that the line determined by (xı̂, yı̂) and (x̂, ŷ) also achieves the optimal

empirical risk L?. More precisely, the line (â, b̂) induced by ((xı̂, yı̂), (x̂, ŷ))

via1 â = (ŷ − yı̂)/(x̂ − xı̂) and b̂ = yı̂ − âxı̂, verifies L(â, b̂) = L?.

To prove this claim, we begin by recasting (5.1) as a linear program:

min
(ε1,...,εm,a,b)∈Rm+2

m∑
i=1

εi s.t. (4.2)

∀i ∈ [m] εi ≥ 0

∀i ∈ [m] axi + b− y ≤ εi
∀i ∈ [m] − axi − b+ y ≤ εi.

We observe that the linear program in (4.2) is feasible with a finite solution

(and actually, the constraints εi ≥ 0 are redundant). Furthermore, any optimal

value is achievable at one of the extreme points of the constraint-set polytope

P ⊂ Rm+2. Next, we claim that the extreme points of the polytope P are

all of the form v ∈ P with two (or more) of the εis equal to 0. This suffices

to prove our main claim, since εi = 0 in v ∈ P iff the (a, b) induced by v

verifies axi+b = yi; in other words, the line induced by (a, b) contains the point

(xi, yi). If a line contains two data points, it is uniquely determined by them:

1We ignore the degenerate possibility of vertical lines, which reduces to the 0-dimensional
case.
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Figure 4.1: A sample S of m = 20 points (xi, yi) was drawn iid uniformly from
[0, 1]2. On this sample, `1 regression was performed by solving the LP in (4.2), shown
on the left, and `∞ regression was performed by solving the LP in (4.3), on the right.
In each case, the regressor provided by the LP solver is indicated by the thick (red)
line. Notice that for `1, the line contains exactly 2 datapoints. For `∞, the regressor
contains no datapoints; rather, the d + 2 = 3 “support vectors” are indicated by .

these constitute a compression set of size 2. (See illustration in Figure 4.1.)

Now we prove our claimed property of the extreme points. First, we claim

that any extreme point of P must have least one εi equal to 0. Indeed, let (a, b)

define a line. Define

b+ := min
{
b̃ ∈ [b,∞) : ∃i ∈ [m], axi + b̃ = yi)

}
and analogously,

b− := max
{
b̃ ∈ (−∞, b] : ∃i ∈ [m], axi + b̃ = yi)

}
.

In words, (a, b+) is the line obtained by increasing b to a maximum value of

b+, where the line (a, b+) touches a datapoint, and likewise, (a, b−) is the line

obtained by decreasing b to a minimum value of b−, where the line (a, b−)

touches a datapoint.

Define by S+
a,b := {i : |axi + b < yi|} the points above the line defined by

(a, b) and S−a,b := {i : |axi + b > yi|} the points below the line defined by (a, b).

For a line (a, b) which does not contain a data point we can rewrite the sample



39

loss as

L(a, b) =
∑
i∈S+

a,b

(yi − (axi + b)) +
∑
i∈S−a,b

((axi + b)− yi)

=

 ∑
i∈S−a,b

xi −
∑
i∈S+

a,b

xi

 a+
(
|S−a,b| − |S

+
a,b|
)
b+

 ∑
i∈S+

a,b

yi −
∑
i∈S−a,b

yi


=: λa+ µb+ ν.

Since for fixed a and b ∈ [b−, b+], the quantities S−a,b, S
+
a,b are constant, it

follows that the function L(a, ·) is affine in b, and hence minimized at b± ∈
{b−, b+}. Thus, there is no loss of generality in taking b? = b±, which implies

that the optimal solution’s line (a?, b?) contains a data point (xı̂, yı̂). If the line

(a?, b±) contains other data points then we are done, so assume to the contrary

that εı̂ is the only εi that vanishes in the corresponding solution v? ∈ P.

Let Pı̂ ⊂ P consist of all v for which εı̂ = 0, corresponding to all feasible

solutions whose line contains the data point (xı̂, yı̂). Let us say that two lines

(a1, b1), (a2, b2) are equivalent if they induce the same partition on the data

points, in the sense of linear separation in the plane. The formal condition is

S−a1,b1 = S−a1,b1 , which is equivalent to S+
a1,b1

= S+
a1,b1

.

Define P?ı̂ ⊂ Pı̂ to consist of those feasible solutions whose line is equiv-

alent to (a?, b±). Denote by a+ := max {a : (ε1, .., εm, a, b) ∈ P?ı̂ } and define

v+ to be a feasible solution in P?ı̂ with slope a+, and analogously, a− :=

min {a : (ε1, .., εm, a, b) ∈ P?ı̂ } and v− ∈ P?ı̂ with slope a−. Geometrically this

corresponds to rotating the line (a?, b?) about the point (xı̂, yı̂) until it encoun-

ters a data point above and below.

Writing, as above, the sample loss in the form L(a, b), we see that L(·, b±)

is affine in a over the range a ∈ [a−, a+] and hence is minimized at one of the

endpoints. This furnishes another datapoint (x̂, ŷ) verifying âx̂ + b̂ = ŷ for

L(â, b̂) = L?, and hence proves compressibility into two points for d = 1.

Generalizing to d > 1 is quite straightforward. We define

L(a, b) =
∑
i∈[m]

|(〈a,xi〉+ b)− yi|

and express it as a linear program analogous to (4.2), where the minimization

is over (ε1, . . . , εm,a, b) ∈ Rm+d+1 and the expression axi in the constraints is

replaced by 〈a,xi〉. Given an optimal solution (a?, b?), we argue exactly as above
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that b? may be chosen so that the optimal regressor contains some datapoint

— say, (x1, y1). Holding b? and a(j), j 6= 1 fixed, we argue, as above, that

a(1) may be chosen so that the optimal regressor contains another datapoint

(say, (x2, y2)). Proceeding in this fashion, we inductively argue that the optimal

regressor may be chosen to contain some d + 1 datapoints, which provides the

requisite compression scheme.

Theorem 4.4. There exists an efficiently computable compression scheme for

agnostic linear regression in Rd under the `∞ loss of size d+ 2.

Proof. Given m labeled points in Rd × R, S = (x1, y1), . . . , (xm, ym) and any

a ∈ Rd, b ∈ R define the empirical risk

L(a, b) := max {|〈a,xi〉+ b− yi| : i ∈ [m]} .

We cast the risk minimization problem as a linear program:

min
(ε,a,b)∈Rd+2

: ε (4.3)

s.t. ∀i : ε− 〈a,xi〉 − b+ yi ≥ 0

ε+ 〈a,xi〉+ b− yi ≥ 0.

(As before, the constraint ε ≥ 0 is implicit in the other constraints.) Introducing

the Lagrange multipliers λi, µi ≥ 0, i ∈ [m], we cast the optimization problem

in the form of a Lagrangian:

L(ε,a, b, µ1 . . . , µm, λ1 . . . , λm) = ε−
m∑
i=1

λi (ε− 〈a, xi〉 − b+ yi)−
m∑
i=1

µi (ε+ 〈a, xi〉+ b− yi) .

The KKT conditions imply, in particular, that

∀i : λi(ε− 〈a,xi〉 − b+ yi) = 0

µi(ε+ 〈a,xi〉+ b− yi) = 0.

Geometrically, this means that either the constraints corresponding to the

ith datapoint are inactive — in which case, omitting the datapoint does not af-

fect the solution — or otherwise, the ith datapoint induces the active constraint

〈a,xi〉+ b− yi = ε. (4.4)
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On analogy with SVM, let us refer to the datapoints satisfying (4.4) as the

support vectors; clearly, the remaining sample points may be discarded without

affecting the solution. Solutions to (4.3) lie in Rd+2 and hence d + 2 linearly

independent datapoints suffice to uniquely pin down an optimal (ε,a, b) via the

equations (4.4).



Chapter 5

Future Research

It’s difficult to make predictions,

especially about the future.

Niels Bohr

5.1 Expanding Warmuth’s Conjecture into Real-

Valued Classes

Recall the fundamental question posed by Warmuth:

Do every class with finite V C-dimension admits a constant-size compression

scheme which size is linear in the dimension?

As mentioned above, Moran and Yehudayoff proved the existence constant-

size compression scheme which size is exponential in the dimension. Meaning

the linear possibility is still open. Warmuth linearity conjecture was based on

several previews lines of work, constructing compression schemes of linear size

for specific classes of binary-functions. In particular: classes with V Cdim = 1,

Maximum classes and Duddley classes.

The original conjecture concerns, the basic, specific, case of binary-function

classes, on which the original notion of compression scheme and VC-dimension

was defined. Once we established the extension of the reduction for real-valued

function classes it is natural to propose the following question:

42
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Open Problem: Do every class with finite Fat-shattering-dimension admits

a constant-size compression scheme which size is linear in the dimension?

Our work proves a partial, qualitative, result, namely: Every class with finite

Fat-shattering-dimension admits a constant-size compression scheme which size

is exponential in the dimension.

In order to base the possibility of linear-sized compression scheme, a natural

initial goal might be extending the known results for the binary case. This

direction, beside the difficulties which might rise as the real-valued case is more

complex then the binary one, is to define a proper extension to the above notion

for each family of classes.

5.1.1 Real-Maximum classes compression

During their investigation of the connection between PAC-learning and sample-

compression schemes, Floyd and Warmuth recall a definition by Welzl of maxi-

mum class. Let Φd(m) called the growth-function be defined as

Φd(m) =


∑d
i=0

(
m
i

)
, m ≥ d

2m, m < d
.

The fundamental combinatorial result for VC classes known as The Sauer’s

Lemma is the following

Lemma 5.1 (Sauer’s Lemma). Let d = V C(F), Then for any Y ⊆ X the for

restriction of F to Y , denoted by F|Y ,

F|Y ≤ Φd(|Y |).

Definition 5.1 (Maximum class). A concept class with V C(F) = d is called

maximum if for every finite subset Y of the instance space, contains exactly

ΦD(|Y |) concepts. More formally

F|Y = Φd(|Y |).

Thus a maximum class F restricted to a finite subset Y , is of maximum size.

Using some of Welzl’s results, Floyd and Warmuth provide a sample-compression

scheme of size O (d) for maximum classes with V Cdim(F) = d.
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In order to extend this to the real-valued setting, we first need to define

what is the right notion of maximum for such classes. One option is to reduce

the problem into a binary one. First recall another combinatorial dimension for

real-valued function classes - the Pseudo-dimension, first defined by Pollard:

Definition 5.2 (Pseudo-Dimension). Let F ⊂ [0, 1]X we say that F shatters a

set x = x1, . . . , xm ⊆ if there exist r = r1, . . . , rm ∈ Rm s.t. for all b ∈ {0, 1}m

there exist fb ∈ F s.t.

∀i ∈ [m] : sign(fb(xi)− ri) = bi.

The pseudo-dimension of F , denoted by Pdim(F), is the cardinally of the largest

set of points in X that can be pseudo-shattered by F

Now for a function-class F ⊆ RX , define the class of indicators of the

epigraphs

HF := {(x, y)→ sign(f(x)− y) | f ∈ F} .

It is not hard to prove that V Cdim(HF ) = Pdim(F). Using this reduction a

possible definition for real -maximum class might be a class F such that HF is

maximum class of dimension Pdim(F).

Another direction might be a more direct one - substitute the growth-

function Φ by equivalent notion relevant for the real-valued case, e.g. covering

numbers. The main problem with this direction is that although there are many

bounds on the covering-numbers no tight results are known for the general case,

in the way Φ is used in Floyd and Warmuth work.

Either way, whatever extended definition chosen, the main issue would be

to try and prove tighter upper bound for those classes.

5.1.2 Real-Dudley classes compression

Before the definition of sample-copmression schemes, on the wide and then

young research of learning theroy Dudley [1984] defined the following definition:

Definition 5.3. For a function class F which is a vector space over R, and any

h : X → R Denote

HF,h := {(x, f) | x ∈ X , f ∈ F , f(x) + h(x) ≥ 0} .
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Or in other words if we denote pos(g) := {x ∈ X | g(x) ≥ 0} then

HF,h := {pos(f + h) | f ∈ F} .

A concept class which can be construed in such way is called Dudley-Class

Dudley proved that for such a class V C(HF,h) = dim(F) when dim(F) is

the dimension of F as a vector space. Dudley classes where proved to be in fact

maximum, under minor assumptions, by Floyd.

In a through work, Ben-David and Litman, used this notion in order to

prove some universality properties for a collection of natural geometric classes

as hyperplanes. Using those properties they then go and prove than the dual

VC dimension of Dudley classes are bounded by the primal VC dimension of the

same class. Leveraging this results and some, Independently important, result

they prove that every Dudley class admits a sample-compression scheme which

is linear in the VC-dimension.

As in the case of maximum classes, first we will need to understand what is

the most suitable definition for the real-valued case. Here the main candidate

is just dropping the pos(·) operator, namely

Definition 5.4. For a function class F which is a vector space over R, and any

h : X → R Denote

HF,h := {f + h | f ∈ F} .

A concept class which can be construed in such way is called real-Dudley-Class

After selecting the proper notion, there are two possible directions

1. Extend Floyd’s result, under modified assumptions and regarding Pdim

instead of V C.

2. Extend Ben-David and Litman’s embeddings system in to construct their

scheme or at least recover the bound on the dual-Pdim, since using such

bound and pluging it into our algorithm guarantees, results in a uniformly

ε-approximate compression schme with linear-dependence on Pdim.

5.2 Agnostic Compressability

The case of agnostic-compression schemes is somewhat different in first sight,

combined with the past negative results it is not surprising that the results for
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this regime our very sparse. Yet the above positive results give rise to couple of

basic and more wide questions which can be of high importance to the better

known areas of learning theory as the classic notions of compression schemes.

5.2.1 Open Problem: Compressing to Pseudo-dimension

Number of Points

The above positive results for `1 loss may also lead us to wonder how general

of a result might be possible. In particular, noting that the pseudo-dimension

[Pollard, 1984, 1990, Anthony and Bartlett, 1999] of linear functions in Rd is

precisely d + 1 [Anthony and Bartlett, 1999], there is an intriguing possibility

for the following generalization.

Open Problem: Under the `1 loss, does every class F of real-valued functions

admit an agnostic compression scheme of size Pdim(F)?

It is also interesting, and perhaps more approachable as an initial aim, to ask

whether there is an agnostic compression scheme of size at most proportional

to Pdim(F). Even falling short of this, one can ask the more-basic question of

whether classes with Pdim(F) <∞ always have bounded agnostic compression

schemes (i.e., independent of sample size m), and more specifically whether the

bound is expressible purely as a function of Pdim(F) (Moran and Yehudayoff,

2016 have shown this is always possible in the realizable classification setting).

These questions are directly related to (and inspired by) the well-known

long-standing conjecture of Warmuth [2003], which asks whether, for realizable-

case binary classification, there is always a compression scheme of size at most

linear in the VC dimension of the concept class. Indeed, it is clear that a

positive solution of our open problem above would imply a positive solution to

the original sample compression conjecture, since in the realizable case with a

function class F of {0, 1}-valued functions, the minimal empirical `1 loss on the

data is zero, and any function obtaining zero empirical `1 loss on a data set

labeled with {0, 1} values must be {0, 1}-valued on that data set, and thus can

be thought of as a sample-consistent classifier.1 Noting that, for F containing

{0, 1}-valued functions, Pdim(F) is equal the VC dimension, the implication is

clear.

The converse of this direct relation is not necessarily true. Specifically, for a

1To make such a function actually binary-valued everywhere, it suffices to threshold at
1/2.
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set F of real-valued functions, consider the set H of subgraph sets: hf (x, y) =

I[y ≤ f(x)], f ∈ F . In particular, note that the VC dimension of H is precisely

Pdim(F). It is not true that any realizable classification compression scheme

for H is also an agnostic compression scheme for F under `1 loss. Neverthe-

less, this reduction-to-classification approach seems intuitively appealing, and

it might possibly be the case that there is some way to modify certain types of

compression schemes for H to convert them into agnostic compression schemes

for F . Following up on this line of investigation seems the natural next step

toward resolving the above general open question.

5.2.2 Characterization of Agnostic Compressibility

Consider the following proof sketch for Theorem 4.3:

A sample consists of (xi, yi)i∈[m], where xi, yi ∈ R (for simplicity we treat

the d = 1 case), and H = {R 3 x 7→ ax+ b : a, b ∈ R}.
Let (a?, b?) be a (possibly non-unique) minimizer of

L(a, b) :=
∑
i∈[m]

|(axi + b)− yi|, (5.1)

achieving the value L?. We claim that we can always find two indices ı̂, ̂ ∈ [m]

such that the line determined by (xı̂, yı̂) and (x̂, ŷ) also achieves the optimal

empirical risk L?. More precisely, the line (â, b̂) induced by ((xı̂, yı̂), (x̂, ŷ))

via2 â = (ŷ − yı̂)/(x̂ − xı̂) and b̂ = yı̂ − âxı̂, verifies L(â, b̂) = L?.

To prove this claim, we begin by recasting (5.1) as a linear program:

min
(ε1,...,εm,a,b)∈Rm+2

m∑
i=1

εi s.t. (5.2)

∀i ∈ [m] εi ≥ 0

∀i ∈ [m] axi + b− y ≤ εi
∀i ∈ [m] − axi − b+ y ≤ εi.

We observe that the linear program in (5.2) is feasible with a finite solution

(and actually, the constraints εi ≥ 0 are redundant). Furthermore, any optimal

value is achievable at one of the extreme points of the constraint-set polytope

P ⊂ Rm+2. Next, we claim that the extreme points of the polytope P are

2We ignore the degenerate possibility of vertical lines, which reduces to the 0-dimensional
case.
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all of the form v ∈ P with two (or more) of the εis equal to 0. This suffices

to prove our main claim, since εi = 0 in v ∈ P iff the (a, b) induced by v

verifies axi+b = yi; in other words, the line induced by (a, b) contains the point

(xi, yi). If a line contains two data points, it is uniquely determined by them:

these constitute a compression set of size 2.

With this formulation in mind, it might be possible to extend the above

result into every loss-function whose transformation into linear-program yields

constant number of constrains which determinate each extreme point. Further-

more we conjecture that this isn’t only a sufficient condition but also a necessary

one. For this reason, we also conjure that r-piecewise linear loss functions are

the only ones that admit bounded agnostic compression schemes.

5.2.3 From Agnostic-Compression to Approximate-Agnostic-

Compression

Another direction that can be taken using the linear-programming paradigm, is -

using agnostic-compression schemes in order to construct approximate-agnostic-

compression schemes.

Following David et al. [2016], we say that (κ, ρ) is a k-size ε-approximate-

agnostic sample compression scheme for F if κ is a k-selection and for all S =

((x1, y1), . . . , (xm, ym)), fS := ρ(κ(S)) achieves F-competitive empirical loss:

Lp(fS , S) ≤ inf
f∈F

Lp(f, S) + ε.

According to our conjecture from Subsection 5.2.2, loss-function which are

not piecewise-linear can’t admit agnostic-compression schemes. Yet, as proven

by David et al. [2016, Theorem 4.3], if we relax the requirements and replace

the agnostic-compression with approximate-agnostic-compression, we get that

“Learning implies approximate compressing”. For this reason it is interesting

to try and find approximate-compression schemes for different loss-function.

One strategy of constructing such schemes can be through (non-approximate-

)agnostic-compression schemes. The idea is to approximate the loss function

with a piecewise-linear function, and then apply agnostic-compression scheme

regarding that loss-function. See for example Figure 5.1

The resulting approximation will, of course depend on the number linear-

pieces. The compression size might depend on the same parameter and in

addition on the specific compression scheme used for the linear-approximated
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Figure 5.1: Piecewise approximation of the `2 loss function, using 5 linear pieces.

loss.

This approach may be used to a wide range of loss-functions and it is

interesting how will it compare to the state-of-the-art approximate-agnostic-

compression schemes. Also, using David et al. [2016, Theorem 4.2] idea or a

more specific results, one might derive generalization bounds using approximate-

agnostic-compression-schemes, and it is hence interesting to try and see what

quality of generalization bounds can this approach yield.
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